Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
import torch | |
import json | |
import logging | |
from diffusers import DiffusionPipeline | |
from huggingface_hub import login | |
import time | |
from datetime import datetime | |
from io import BytesIO | |
import torch.nn.functional as F | |
import time | |
import boto3 | |
from io import BytesIO | |
import re | |
import json | |
# Login Hugging Face Hub | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
login(token=HF_TOKEN) | |
import diffusers | |
print(diffusers.__version__) | |
# init | |
dtype = torch.float16 # use float16 for fast generate | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
base_model = "black-forest-labs/FLUX.1-dev" | |
# load pipe | |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device) | |
MAX_SEED = 2**32 - 1 | |
class calculateDuration: | |
def __init__(self, activity_name=""): | |
self.activity_name = activity_name | |
def __enter__(self): | |
self.start_time = time.time() | |
self.start_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.start_time)) | |
print(f"Activity: {self.activity_name}, Start time: {self.start_time_formatted}") | |
return self | |
def __exit__(self, exc_type, exc_value, traceback): | |
self.end_time = time.time() | |
self.elapsed_time = self.end_time - self.start_time | |
self.end_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.end_time)) | |
if self.activity_name: | |
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") | |
else: | |
print(f"Elapsed time: {self.elapsed_time:.6f} seconds") | |
def generate_image(prompt, steps, seed, cfg_scale, width, height, progress): | |
with calculateDuration(f"Make a new generator:${seed}"): | |
pipe.to(device) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
with calculateDuration("Generating image"): | |
# Generate image | |
generated_image = pipe( | |
prompt=prompt, | |
num_inference_steps=steps, | |
guidance_scale=cfg_scale, | |
width=width, | |
height=height, | |
max_sequence_length=512, | |
generator=generator, | |
).images[0] | |
progress(99, "Generate image success!") | |
return generated_image | |
def upload_image_to_r2(image, account_id, access_key, secret_key, bucket_name): | |
print("upload_image_to_r2", account_id, access_key, secret_key, bucket_name) | |
connectionUrl = f"https://{account_id}.r2.cloudflarestorage.com" | |
s3 = boto3.client( | |
's3', | |
endpoint_url=connectionUrl, | |
region_name='auto', | |
aws_access_key_id=access_key, | |
aws_secret_access_key=secret_key | |
) | |
current_time = datetime.now().strftime("%Y/%m/%d/%H%M%S") | |
image_file = f"generated_images/{current_time}_{random.randint(0, MAX_SEED)}.png" | |
buffer = BytesIO() | |
image.save(buffer, "PNG") | |
buffer.seek(0) | |
s3.upload_fileobj(buffer, bucket_name, image_file) | |
print("upload finish", image_file) | |
return image_file | |
def run_lora(prompt, lora_strings_json, cfg_scale, steps, randomize_seed, seed, width, height, upload_to_r2, account_id, access_key, secret_key, bucket, progress=gr.Progress(track_tqdm=True)): | |
print("run_lora", prompt, lora_strings_json, cfg_scale, steps, width, height) | |
gr.Info("Starting process") | |
# Load LoRA weights | |
lora_configs = None | |
if lora_strings_json: | |
try: | |
lora_configs = json.loads(lora_strings_json) | |
except: | |
gr.Warning("Parse lora config json failed") | |
print("parse lora config json failed") | |
if lora_configs: | |
with calculateDuration("Loading LoRA weights"): | |
active_adapters = pipe.get_active_adapters() | |
print("get_active_adapters", active_adapters) | |
adapter_names = [] | |
adapter_weights = [] | |
for lora_info in lora_configs: | |
lora_repo = lora_info.get("repo") | |
weights = lora_info.get("weights") | |
adapter_name = lora_info.get("adapter_name") | |
adapter_weight = lora_info.get("adapter_weight") | |
adapter_names.append(adapter_name) | |
adapter_weights.append(adapter_weight) | |
if adapter_name in active_adapters: | |
print(f"Adapter '{adapter_name}' is already loaded, skipping.") | |
continue | |
if lora_repo and weights and adapter_name: | |
# load lora | |
try: | |
pipe.load_lora_weights(lora_repo, weight_name=weights, adapter_name=adapter_name) | |
except ValueError as e: | |
print(f"Error loading LoRA adapter: {e}") | |
continue | |
# set lora weights | |
if len(adapter_names) > 0: | |
pipe.set_adapters(adapter_names, adapter_weights=adapter_weights) | |
# Set random seed for reproducibility | |
if randomize_seed: | |
with calculateDuration("Set random seed"): | |
seed = random.randint(0, MAX_SEED) | |
# Generate image | |
error_message = "" | |
try: | |
print("Start applying for zeroGPU resources") | |
final_image = generate_image(prompt, steps, seed, cfg_scale, width, height, progress) | |
except Exception as e: | |
error_message = str(e) | |
gr.Error(error_message) | |
print("Run error", e) | |
final_image = None | |
if final_image: | |
if upload_to_r2: | |
with calculateDuration("Upload image"): | |
url = upload_image_to_r2(final_image, account_id, access_key, secret_key, bucket) | |
result = {"status": "success", "message": "upload image success", "url": url} | |
else: | |
result = {"status": "success", "message": "Image generated but not uploaded"} | |
else: | |
result = {"status": "failed", "message": error_message} | |
gr.Info("Completed!") | |
progress(100, "Completed!") | |
return final_image, seed, json.dumps(result) | |
# Gradio interface | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("flux-dev-multi-lora") | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Text(label="Prompt", placeholder="Enter prompt", lines=10) | |
lora_strings_json = gr.Text(label="LoRA Configs (JSON List String)", placeholder='[{"repo": "lora_repo1", "weights": "weights1", "adapter_name": "adapter_name1", "adapter_weight": 1}, {"repo": "lora_repo2", "weights": "weights2", "adapter_name": "adapter_name2", "adapter_weight": 1}]', lines=5) | |
run_button = gr.Button("Run", scale=0) | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Row(): | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024) | |
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024) | |
with gr.Row(): | |
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5) | |
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28) | |
upload_to_r2 = gr.Checkbox(label="Upload to R2", value=False) | |
account_id = gr.Textbox(label="Account Id", placeholder="Enter R2 account id") | |
access_key = gr.Textbox(label="Access Key", placeholder="Enter R2 access key here") | |
secret_key = gr.Textbox(label="Secret Key", placeholder="Enter R2 secret key here") | |
bucket = gr.Textbox(label="Bucket Name", placeholder="Enter R2 bucket name here") | |
with gr.Column(): | |
result = gr.Image(label="Result", show_label=False) | |
seed_output = gr.Text(label="Seed") | |
json_text = gr.Text(label="Result JSON") | |
inputs = [ | |
prompt, | |
lora_strings_json, | |
cfg_scale, | |
steps, | |
randomize_seed, | |
seed, | |
width, | |
height, | |
upload_to_r2, | |
account_id, | |
access_key, | |
secret_key, | |
bucket | |
] | |
outputs = [result, seed_output, json_text] | |
run_button.click( | |
fn=run_lora, | |
inputs=inputs, | |
outputs=outputs | |
) | |
demo.queue().launch() | |