Spaces:
Running
on
Zero
Running
on
Zero
support multi loras
Browse files- __pycache__/live_preview_helpers.cpython-310.pyc +0 -0
- app.py +42 -14
__pycache__/live_preview_helpers.cpython-310.pyc
CHANGED
Binary files a/__pycache__/live_preview_helpers.cpython-310.pyc and b/__pycache__/live_preview_helpers.cpython-310.pyc differ
|
|
app.py
CHANGED
@@ -18,6 +18,9 @@ import boto3
|
|
18 |
from io import BytesIO
|
19 |
from datetime import datetime
|
20 |
|
|
|
|
|
|
|
21 |
|
22 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
23 |
|
@@ -27,7 +30,20 @@ login(token=HF_TOKEN)
|
|
27 |
dtype = torch.bfloat16
|
28 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
29 |
base_model = "black-forest-labs/FLUX.1-dev"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device)
|
|
|
|
|
|
|
31 |
MAX_SEED = 2**32-1
|
32 |
|
33 |
class calculateDuration:
|
@@ -70,7 +86,7 @@ def upload_image_to_r2(image, account_id, access_key, secret_key, bucket_name):
|
|
70 |
|
71 |
|
72 |
@spaces.GPU
|
73 |
-
def generate_image(prompt, steps, seed, cfg_scale, width, height,
|
74 |
pipe.to("cuda")
|
75 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
76 |
with calculateDuration("Generating image"):
|
@@ -82,7 +98,7 @@ def generate_image(prompt, steps, seed, cfg_scale, width, height, lora_scale, pr
|
|
82 |
width=width,
|
83 |
height=height,
|
84 |
generator=generator,
|
85 |
-
|
86 |
max_sequence_length=256
|
87 |
).images[0]
|
88 |
|
@@ -90,21 +106,34 @@ def generate_image(prompt, steps, seed, cfg_scale, width, height, lora_scale, pr
|
|
90 |
return generate_image
|
91 |
|
92 |
|
93 |
-
def run_lora(prompt, cfg_scale, steps,
|
94 |
|
95 |
-
# with calculateDuration("Unloading LoRA"):
|
96 |
-
# pipe.unload_lora_weights()
|
97 |
-
|
98 |
-
# Load LoRA weights
|
99 |
-
if lora_repo and lora_name:
|
100 |
-
with calculateDuration(f"Loading LoRA weights for {lora_repo} {lora_name}"):
|
101 |
-
pipe.load_lora_weights(lora_repo, weight_name=lora_name)
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
# Set random seed for reproducibility
|
104 |
if randomize_seed:
|
105 |
seed = random.randint(0, MAX_SEED)
|
106 |
|
107 |
-
final_image = generate_image(prompt, steps, seed, cfg_scale, width, height,
|
108 |
|
109 |
if upload_to_r2:
|
110 |
with calculateDuration("upload r2"):
|
@@ -131,8 +160,7 @@ with gr.Blocks(css=css) as demo:
|
|
131 |
|
132 |
with gr.Column():
|
133 |
prompt = gr.Text(label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False)
|
134 |
-
|
135 |
-
lora_name = gr.Text( label="Weights", max_lines=1, placeholder="Enter a lora weights",visible=True)
|
136 |
run_button = gr.Button("Run", scale=0)
|
137 |
|
138 |
with gr.Accordion("Advanced Settings", open=False):
|
@@ -164,7 +192,7 @@ with gr.Blocks(css=css) as demo:
|
|
164 |
gr.on(
|
165 |
triggers=[run_button.click, prompt.submit],
|
166 |
fn = run_lora,
|
167 |
-
inputs = [prompt, cfg_scale, steps,
|
168 |
outputs=[result, seed, json_text]
|
169 |
)
|
170 |
|
|
|
18 |
from io import BytesIO
|
19 |
from datetime import datetime
|
20 |
|
21 |
+
from diffusers import UNet2DConditionModel
|
22 |
+
|
23 |
+
|
24 |
|
25 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
26 |
|
|
|
30 |
dtype = torch.bfloat16
|
31 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
32 |
base_model = "black-forest-labs/FLUX.1-dev"
|
33 |
+
|
34 |
+
# unet = UNet2DConditionModel.from_pretrained(
|
35 |
+
# base_model,
|
36 |
+
# torch_dtype=torch.float16,
|
37 |
+
# use_safetensors=True,
|
38 |
+
# variant="fp16",
|
39 |
+
# subfolder="unet",
|
40 |
+
# ).to("cuda")
|
41 |
+
|
42 |
+
|
43 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device)
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
MAX_SEED = 2**32-1
|
48 |
|
49 |
class calculateDuration:
|
|
|
86 |
|
87 |
|
88 |
@spaces.GPU
|
89 |
+
def generate_image(prompt, steps, seed, cfg_scale, width, height, progress):
|
90 |
pipe.to("cuda")
|
91 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
92 |
with calculateDuration("Generating image"):
|
|
|
98 |
width=width,
|
99 |
height=height,
|
100 |
generator=generator,
|
101 |
+
cross_attention_kwargs={"scale": 1.0},
|
102 |
max_sequence_length=256
|
103 |
).images[0]
|
104 |
|
|
|
106 |
return generate_image
|
107 |
|
108 |
|
109 |
+
def run_lora(prompt, cfg_scale, steps, lora_strings, randomize_seed, seed, width, height, lora_scale, upload_to_r2, account_id, access_key, secret_key, bucket, progress=gr.Progress(track_tqdm=True)):
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
+
# Load LoRA weights
|
113 |
+
if lora_strings:
|
114 |
+
with calculateDuration(f"Loading LoRA weights for {lora_strings}"):
|
115 |
+
pipe.unload_lora_weights()
|
116 |
+
lora_array = lora_strings.split(',')
|
117 |
+
adapter_names = []
|
118 |
+
for lora_string in lora_array:
|
119 |
+
parts = lora_string.split(':')
|
120 |
+
if len(parts) == 3:
|
121 |
+
lora_repo, weights, adapter_name = parts
|
122 |
+
# 调用 pipe.load_lora_weights() 方法加载权重
|
123 |
+
pipe.load_lora_weights(lora_repo, weight_name=weights, adapter_name=adapter_name)
|
124 |
+
adapter_names.append(adapter_name)
|
125 |
+
else:
|
126 |
+
print(f"Invalid format for lora_string: {lora_string}")
|
127 |
+
|
128 |
+
adapter_weights = [lora_scale] * len(adapter_names)
|
129 |
+
# 调用 pipeline.set_adapters 方法设置 adapter 和对应权重
|
130 |
+
pipe.set_adapters(adapter_names, adapter_weights=adapter_weights)
|
131 |
+
|
132 |
# Set random seed for reproducibility
|
133 |
if randomize_seed:
|
134 |
seed = random.randint(0, MAX_SEED)
|
135 |
|
136 |
+
final_image = generate_image(prompt, steps, seed, cfg_scale, width, height, progress)
|
137 |
|
138 |
if upload_to_r2:
|
139 |
with calculateDuration("upload r2"):
|
|
|
160 |
|
161 |
with gr.Column():
|
162 |
prompt = gr.Text(label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False)
|
163 |
+
lora_strings = gr.Text( label="lora_strings", max_lines=1, placeholder="Enter a lora strings", visible=True)
|
|
|
164 |
run_button = gr.Button("Run", scale=0)
|
165 |
|
166 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
192 |
gr.on(
|
193 |
triggers=[run_button.click, prompt.submit],
|
194 |
fn = run_lora,
|
195 |
+
inputs = [prompt, cfg_scale, steps, lora_strings, randomize_seed, seed, width, height, lora_scale, upload_to_r2, account_id, access_key, secret_key, bucket],
|
196 |
outputs=[result, seed, json_text]
|
197 |
)
|
198 |
|