Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -56,11 +56,47 @@ class calculateDuration:
|
|
56 |
|
57 |
@spaces.GPU(duration=120)
|
58 |
@torch.inference_mode()
|
59 |
-
def generate_image(prompt, steps, seed, cfg_scale, width, height, progress):
|
60 |
-
with calculateDuration(f"Make a new generator
|
61 |
pipe.to(device)
|
62 |
generator = torch.Generator(device=device).manual_seed(seed)
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
with calculateDuration("Generating image"):
|
65 |
# Generate image
|
66 |
generated_image = pipe(
|
@@ -102,44 +138,6 @@ def upload_image_to_r2(image, account_id, access_key, secret_key, bucket_name):
|
|
102 |
def run_lora(prompt, lora_strings_json, cfg_scale, steps, randomize_seed, seed, width, height, upload_to_r2, account_id, access_key, secret_key, bucket, progress=gr.Progress(track_tqdm=True)):
|
103 |
print("run_lora", prompt, lora_strings_json, cfg_scale, steps, width, height)
|
104 |
gr.Info("Starting process")
|
105 |
-
# Load LoRA weights
|
106 |
-
lora_configs = None
|
107 |
-
if lora_strings_json:
|
108 |
-
try:
|
109 |
-
lora_configs = json.loads(lora_strings_json)
|
110 |
-
except:
|
111 |
-
gr.Warning("Parse lora config json failed")
|
112 |
-
print("parse lora config json failed")
|
113 |
-
|
114 |
-
if lora_configs:
|
115 |
-
with calculateDuration("Loading LoRA weights"):
|
116 |
-
active_adapters = pipe.get_active_adapters()
|
117 |
-
print("get_active_adapters", active_adapters)
|
118 |
-
adapter_names = []
|
119 |
-
adapter_weights = []
|
120 |
-
for lora_info in lora_configs:
|
121 |
-
lora_repo = lora_info.get("repo")
|
122 |
-
weights = lora_info.get("weights")
|
123 |
-
adapter_name = lora_info.get("adapter_name")
|
124 |
-
adapter_weight = lora_info.get("adapter_weight")
|
125 |
-
|
126 |
-
adapter_names.append(adapter_name)
|
127 |
-
adapter_weights.append(adapter_weight)
|
128 |
-
|
129 |
-
if adapter_name in active_adapters:
|
130 |
-
print(f"Adapter '{adapter_name}' is already loaded, skipping.")
|
131 |
-
continue
|
132 |
-
if lora_repo and weights and adapter_name:
|
133 |
-
# load lora
|
134 |
-
try:
|
135 |
-
pipe.load_lora_weights(lora_repo, weight_name=weights, adapter_name=adapter_name)
|
136 |
-
except ValueError as e:
|
137 |
-
print(f"Error loading LoRA adapter: {e}")
|
138 |
-
continue
|
139 |
-
|
140 |
-
# set lora weights
|
141 |
-
if len(adapter_names) > 0:
|
142 |
-
pipe.set_adapters(adapter_names, adapter_weights=adapter_weights)
|
143 |
|
144 |
# Set random seed for reproducibility
|
145 |
if randomize_seed:
|
@@ -150,7 +148,7 @@ def run_lora(prompt, lora_strings_json, cfg_scale, steps, randomize_seed, seed,
|
|
150 |
error_message = ""
|
151 |
try:
|
152 |
print("Start applying for zeroGPU resources")
|
153 |
-
final_image = generate_image(prompt, steps, seed, cfg_scale, width, height, progress)
|
154 |
except Exception as e:
|
155 |
error_message = str(e)
|
156 |
gr.Error(error_message)
|
|
|
56 |
|
57 |
@spaces.GPU(duration=120)
|
58 |
@torch.inference_mode()
|
59 |
+
def generate_image(prompt, lora_strings_json, steps, seed, cfg_scale, width, height, progress):
|
60 |
+
with calculateDuration(f"Make a new generator:{seed}"):
|
61 |
pipe.to(device)
|
62 |
generator = torch.Generator(device=device).manual_seed(seed)
|
63 |
+
|
64 |
+
# Load LoRA weights
|
65 |
+
pipe.unload_lora_weights()
|
66 |
+
lora_configs = None
|
67 |
+
if lora_strings_json:
|
68 |
+
try:
|
69 |
+
lora_configs = json.loads(lora_strings_json)
|
70 |
+
except:
|
71 |
+
gr.Warning("Parse lora config json failed")
|
72 |
+
print("parse lora config json failed")
|
73 |
+
|
74 |
+
if lora_configs:
|
75 |
+
with calculateDuration("Loading LoRA weights"):
|
76 |
+
print("get_active_adapters", active_adapters)
|
77 |
+
adapter_names = []
|
78 |
+
adapter_weights = []
|
79 |
+
for lora_info in lora_configs:
|
80 |
+
lora_repo = lora_info.get("repo")
|
81 |
+
weights = lora_info.get("weights")
|
82 |
+
adapter_name = lora_info.get("adapter_name")
|
83 |
+
adapter_weight = lora_info.get("adapter_weight")
|
84 |
+
|
85 |
+
adapter_names.append(adapter_name)
|
86 |
+
adapter_weights.append(adapter_weight)
|
87 |
+
|
88 |
+
if lora_repo and weights and adapter_name:
|
89 |
+
# load lora
|
90 |
+
try:
|
91 |
+
pipe.load_lora_weights(lora_repo, weight_name=weights, adapter_name=adapter_name)
|
92 |
+
except ValueError as e:
|
93 |
+
print(f"Error loading LoRA adapter: {e}")
|
94 |
+
continue
|
95 |
+
|
96 |
+
# set lora weights
|
97 |
+
if len(adapter_names) > 0:
|
98 |
+
pipe.set_adapters(adapter_names, adapter_weights=adapter_weights)
|
99 |
+
|
100 |
with calculateDuration("Generating image"):
|
101 |
# Generate image
|
102 |
generated_image = pipe(
|
|
|
138 |
def run_lora(prompt, lora_strings_json, cfg_scale, steps, randomize_seed, seed, width, height, upload_to_r2, account_id, access_key, secret_key, bucket, progress=gr.Progress(track_tqdm=True)):
|
139 |
print("run_lora", prompt, lora_strings_json, cfg_scale, steps, width, height)
|
140 |
gr.Info("Starting process")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
# Set random seed for reproducibility
|
143 |
if randomize_seed:
|
|
|
148 |
error_message = ""
|
149 |
try:
|
150 |
print("Start applying for zeroGPU resources")
|
151 |
+
final_image = generate_image(prompt, lora_strings_json, steps, seed, cfg_scale, width, height, progress)
|
152 |
except Exception as e:
|
153 |
error_message = str(e)
|
154 |
gr.Error(error_message)
|