File size: 10,744 Bytes
6373ff8
ccc80c2
 
 
8d7d2d7
ccc80c2
6373ff8
 
b9ea7a6
3fc0dd0
b9ea7a6
92f4fa3
6373ff8
8385a65
f93e467
8d7d2d7
8d65475
2c50a6c
 
 
f93e467
 
a209f33
 
2c50a6c
16c2491
3fc0dd0
 
8d7d2d7
6373ff8
16c2491
df50fe7
df9f472
55e274c
6840742
16c2491
a9da525
16c2491
a9da525
b24ee52
b9ea7a6
12b22a2
da3a145
b9ea7a6
f93e467
ccc80c2
6373ff8
 
 
ccc80c2
6373ff8
 
422bc49
 
6373ff8
 
 
 
 
422bc49
 
6373ff8
 
 
 
422bc49
f4a33cd
2c50a6c
 
b093e55
 
 
ccc80c2
b093e55
 
 
 
 
 
 
 
9401d3b
 
b093e55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c50a6c
8d7d2d7
a209f33
 
f4a33cd
 
b9ea7a6
b5c1016
b8cbb2a
b9ea7a6
 
715a594
 
6840742
625a0c1
6373ff8
9e4bb4a
f93e467
 
1241278
 
c0d646a
9a9c4b1
e60ffba
9a9c4b1
625a0c1
cdeb4dc
 
a209f33
cdeb4dc
 
 
 
 
 
 
 
a209f33
cdeb4dc
 
969ecbb
a209f33
cdeb4dc
 
 
e91fd6d
 
ac9b18f
cdeb4dc
4ad7298
 
cdeb4dc
4ad7298
969ecbb
1622fbb
8dd78c2
 
4ad7298
cdeb4dc
e91fd6d
969ecbb
625a0c1
4c93f86
f93e467
b5c1016
16c2491
8e5b8b6
625a0c1
74f4467
715a594
 
74f4467
715a594
74f4467
 
 
 
 
 
 
 
 
b5c1016
 
b8cbb2a
8e5b8b6
16c2491
 
2c50a6c
 
b093e55
 
2c50a6c
 
16c2491
b5c1016
8e5b8b6
b8cbb2a
f93e467
 
ccc80c2
16c2491
 
ccc80c2
 
 
 
 
 
 
 
16c2491
6222acc
ccc80c2
6373ff8
8d7d2d7
b5c1016
 
b9ea7a6
6222acc
 
 
 
 
 
 
6373ff8
6222acc
422bc49
 
6222acc
 
b9ea7a6
422bc49
6222acc
 
f6c2def
 
 
 
 
 
 
6222acc
 
f93e467
 
eb74c8f
 
 
 
f93e467
2c50a6c
b9ea7a6
f93e467
b9ea7a6
f93e467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccc80c2
7bddac9
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import os
import gradio as gr
import numpy as np
import random
import spaces
import torch
import json
import logging
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
from huggingface_hub import login
from diffusers.utils import load_image
from lora_loading_patch import load_lora_into_transformer
import time
from datetime import datetime
from io import BytesIO
import torch.nn.functional as F
from PIL import Image, ImageFilter
import time
import boto3
from io import BytesIO
import re
import json
import random
import string

# Login Hugging Face Hub
HF_TOKEN = os.environ.get("HF_TOKEN")
login(token=HF_TOKEN)
import diffusers

# init
dtype = torch.bfloat16
device = "cuda:0"

print(device)
base_model = "black-forest-labs/FLUX.1-dev"

# load pipe

txt2img_pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype)

txt2img_pipe = txt2img_pipe.to(device)
txt2img_pipe.__class__.load_lora_into_transformer = classmethod(load_lora_into_transformer)

MAX_SEED = 2**32 - 1

class calculateDuration:
    def __init__(self, activity_name=""):
        self.activity_name = activity_name

    def __enter__(self):
        self.start_time = time.time()
        self.start_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.start_time))
        print(f"Activity: {self.activity_name}, Start time: {self.start_time_formatted}")
        return self
    
    def __exit__(self, exc_type, exc_value, traceback):
        self.end_time = time.time()
        self.elapsed_time = self.end_time - self.start_time
        self.end_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.end_time))
        
        if self.activity_name:
            print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
        else:
            print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
        


def upload_image_to_r2(image, account_id, access_key, secret_key, bucket_name):
    with calculateDuration("Upload images"):
        print("upload_image_to_r2", account_id, access_key, secret_key, bucket_name)
        connectionUrl = f"https://{account_id}.r2.cloudflarestorage.com"
    
        s3 = boto3.client(
            's3',
            endpoint_url=connectionUrl,
            region_name='auto',
            aws_access_key_id=access_key,
            aws_secret_access_key=secret_key
        )
    
        current_time = datetime.now().strftime("%Y/%m/%d/%H/%M/%S")
        image_file = f"generated_images/{current_time}/{random.randint(0, MAX_SEED)}.png"
        buffer = BytesIO()
        image.save(buffer, "PNG")
        buffer.seek(0)
        s3.upload_fileobj(buffer, bucket_name, image_file)
        print("upload finish", image_file)
        # start to generate thumbnail
        thumbnail = image.copy()
        thumbnail_width = 256
        aspect_ratio = image.height / image.width
        thumbnail_height = int(thumbnail_width * aspect_ratio)
        thumbnail = thumbnail.resize((thumbnail_width, thumbnail_height), Image.LANCZOS)
        
        # Generate the thumbnail image filename
        thumbnail_file = image_file.replace(".png", "_thumbnail.png")
        
        # Save thumbnail to buffer and upload
        thumbnail_buffer = BytesIO()
        thumbnail.save(thumbnail_buffer, "PNG")
        thumbnail_buffer.seek(0)
        s3.upload_fileobj(thumbnail_buffer, bucket_name, thumbnail_file)
        print("upload thumbnail finish", thumbnail_file)
    return image_file

def generate_random_4_digit_string():
    return ''.join(random.choices(string.digits, k=4))

@spaces.GPU(duration=120)
def run_lora(prompt, image_url, lora_strings_json, image_strength,  cfg_scale, steps, randomize_seed, seed, width, height, upload_to_r2, account_id, access_key, secret_key, bucket, progress=gr.Progress(track_tqdm=True)):
    print("run_lora", prompt, lora_strings_json, cfg_scale, steps, width, height)
    gr.Info("Starting process")
    img2img_model = False
    orginal_image = None
    device = txt2img_pipe.device
    
    print(device)
  
    # Set random seed for reproducibility
    if randomize_seed:
        with calculateDuration("Set random seed"):
            seed = random.randint(0, MAX_SEED)

    # Load LoRA weights
    gr.Info("Start to load LoRA ...")
    with calculateDuration("Unloading LoRA"):
        txt2img_pipe.to(device)
        txt2img_pipe.unload_lora_weights()
    print(device)
    lora_configs = None
    adapter_names = []
    lora_names = []
    if lora_strings_json:
        try:
            lora_configs = json.loads(lora_strings_json)
        except:
            gr.Warning("Parse lora config json failed")
            print("parse lora config json failed")
            
        if lora_configs:
           
            with calculateDuration("Loading LoRA weights"):
                adapter_weights = []
                
                for idx, lora_info in enumerate(lora_configs):
                    lora_repo = lora_info.get("repo")
                    weights = lora_info.get("weights")
                    adapter_name = lora_info.get("adapter_name")
                    
                    lora_name = generate_random_4_digit_string()
                    lora_names.append(lora_name)
                    adapter_weight = lora_info.get("adapter_weight")
                    adapter_names.append(adapter_name)
                    adapter_weights.append(adapter_weight)
                    if lora_repo and weights and adapter_name:
                        try:
                            txt2img_pipe.to(device)
                            txt2img_pipe.load_lora_weights(lora_repo, weight_name=weights, adapter_name=lora_name)
                        except:
                            print("load lora error")
                
                # set lora weights
                if len(lora_names) > 0:
                    txt2img_pipe.to(device)
                    txt2img_pipe.set_adapters(lora_names, adapter_weights=adapter_weights)
    
    # Generate image
    error_message = ""
    try:
        gr.Info("Start to generate images ...")
        print(device)
        # Generate image
        pipe = txt2img_pipe.to(device)
        generator = torch.Generator("cuda").manual_seed(seed)
        joint_attention_kwargs = {"scale": 1}
        final_image = pipe(
            prompt=prompt,
            num_inference_steps=steps,
            guidance_scale=cfg_scale,
            width=width,
            height=height,
            max_sequence_length=512,
            generator=generator,
            joint_attention_kwargs=joint_attention_kwargs
        ).images[0]
    except Exception as e:
        error_message =  str(e)
        gr.Error(error_message)
        print("fatal error", e)
        final_image = None
        
    if final_image:
        if upload_to_r2:
            url = upload_image_to_r2(final_image, account_id, access_key, secret_key, bucket)
            result = {"status": "success", "message": "upload image success", "url": url}    
        else:
            result = {"status": "success", "message": "Image generated but not uploaded"}
    else:
        result = {"status": "failed", "message": error_message}
        
    gr.Info("Completed!")
    progress(100, "Completed!")
    return final_image, seed, json.dumps(result)

# Gradio interface

css="""
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown("flux-dev-multi-lora")
    with gr.Row():
        
        with gr.Column():

            prompt = gr.Text(label="Prompt", placeholder="Enter prompt", lines=10)
            lora_strings_json = gr.Text(label="LoRA Configs (JSON List String)", placeholder='[{"repo": "lora_repo1", "weights": "weights1", "adapter_name": "adapter_name1", "adapter_weight": 1}, {"repo": "lora_repo2", "weights": "weights2", "adapter_name": "adapter_name2", "adapter_weight": 1}]', lines=5)
            image_url = gr.Text(label="Image url", placeholder="Enter image url to enable image to image model", lines=1)
            run_button = gr.Button("Run", scale=0)

            with gr.Accordion("Advanced Settings", open=False):

                with gr.Row():
                    seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

                with gr.Row():
                    width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
                    height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)

                with gr.Row():
                    image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
                    cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
                    steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28) 

                upload_to_r2 = gr.Checkbox(label="Upload to R2", value=False)
                account_id = gr.Textbox(label="Account Id", placeholder="Enter R2 account id")
                access_key = gr.Textbox(label="Access Key", placeholder="Enter R2 access key here")
                secret_key = gr.Textbox(label="Secret Key", placeholder="Enter R2 secret key here")
                bucket = gr.Textbox(label="Bucket Name", placeholder="Enter R2 bucket name here")
        

        with gr.Column():
            result = gr.Image(label="Result", show_label=False)
            seed_output = gr.Text(label="Seed")
            json_text = gr.Text(label="Result JSON")
    gr.Markdown("**Disclaimer:**")
    gr.Markdown(
        "This demo is only for research purpose. This space owner cannot be held responsible for the generation of NSFW (Not Safe For Work) content through the use of this demo. Users are solely responsible for any content they create, and it is their obligation to ensure that it adheres to appropriate and ethical standards. This space owner provides the tools, but the responsibility for their use lies with the individual user."
    )
    inputs = [
        prompt,
        image_url,
        lora_strings_json,
        image_strength,
        cfg_scale,
        steps,
        randomize_seed,
        seed,
        width,
        height,
        upload_to_r2,
        account_id,
        access_key,
        secret_key,
        bucket
    ]

    outputs = [result, seed_output, json_text]

    run_button.click(
        fn=run_lora,
        inputs=inputs,
        outputs=outputs
    )
    
try:
    demo.queue().launch()
except:
   print("demo exception ...")