jiuface commited on
Commit
d0852ef
1 Parent(s): 81615ae
Files changed (3) hide show
  1. README.md +1 -1
  2. app.py +129 -121
  3. requirements.txt +7 -1
README.md CHANGED
@@ -4,7 +4,7 @@ emoji: 🖼
4
  colorFrom: purple
5
  colorTo: red
6
  sdk: gradio
7
- sdk_version: 4.26.0
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
 
4
  colorFrom: purple
5
  colorTo: red
6
  sdk: gradio
7
+ sdk_version: 4.29
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
app.py CHANGED
@@ -1,146 +1,154 @@
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
  from diffusers import DiffusionPipeline
5
  import torch
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
- device = "cuda" if torch.cuda.is_available() else "cpu"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- pipe = pipe.to(device)
17
 
18
  MAX_SEED = np.iinfo(np.int32).max
19
  MAX_IMAGE_SIZE = 1024
20
 
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
 
 
22
 
 
23
  if randomize_seed:
24
  seed = random.randint(0, MAX_SEED)
25
-
26
- generator = torch.Generator().manual_seed(seed)
27
-
28
- image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
36
- ).images[0]
37
-
 
 
 
 
 
 
 
38
  return image
39
 
40
- examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
- "A delicious ceviche cheesecake slice",
44
- ]
45
-
46
- css="""
47
- #col-container {
48
- margin: 0 auto;
49
- max-width: 520px;
50
- }
51
- """
52
-
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
- else:
56
- power_device = "CPU"
57
-
58
- with gr.Blocks(css=css) as demo:
59
 
60
- with gr.Column(elem_id="col-container"):
61
- gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
64
- """)
65
-
66
- with gr.Row():
67
-
68
- prompt = gr.Text(
69
- label="Prompt",
70
- show_label=False,
71
- max_lines=1,
72
- placeholder="Enter your prompt",
73
- container=False,
74
- )
75
-
76
- run_button = gr.Button("Run", scale=0)
77
-
78
- result = gr.Image(label="Result", show_label=False)
79
 
80
- with gr.Accordion("Advanced Settings", open=False):
81
-
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
87
- )
88
-
89
- seed = gr.Slider(
90
- label="Seed",
91
- minimum=0,
92
- maximum=MAX_SEED,
93
- step=1,
94
- value=0,
95
- )
96
-
97
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
 
99
- with gr.Row():
100
-
101
- width = gr.Slider(
102
- label="Width",
103
- minimum=256,
104
- maximum=MAX_IMAGE_SIZE,
105
- step=32,
106
- value=512,
107
- )
108
 
109
- height = gr.Slider(
110
- label="Height",
111
- minimum=256,
112
- maximum=MAX_IMAGE_SIZE,
113
- step=32,
114
- value=512,
 
 
 
115
  )
 
 
 
116
 
117
- with gr.Row():
118
-
119
- guidance_scale = gr.Slider(
120
- label="Guidance scale",
121
- minimum=0.0,
122
- maximum=10.0,
123
- step=0.1,
124
- value=0.0,
125
- )
126
-
127
- num_inference_steps = gr.Slider(
128
- label="Number of inference steps",
129
- minimum=1,
130
- maximum=12,
131
- step=1,
132
- value=2,
133
- )
134
-
135
- gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
138
- )
139
-
140
  run_button.click(
141
- fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- outputs = [result]
144
- )
 
 
 
 
 
 
 
 
145
 
146
  demo.queue().launch()
 
1
+ import spaces
2
  import gradio as gr
3
  import numpy as np
4
  import random
5
  from diffusers import DiffusionPipeline
6
  import torch
7
+ import random
8
+ from diffusers import (
9
+ ControlNetModel,
10
+ DiffusionPipeline,
11
+ StableDiffusionControlNetPipeline,
12
+ StableDiffusionXLControlNetPipeline,
13
+ UniPCMultistepScheduler,
14
+ EulerDiscreteScheduler,
15
+ AutoencoderKL
16
+ )
17
+ from transformers import DPTFeatureExtractor, DPTForDepthEstimation, DPTImageProcessor
18
+ from transformers import CLIPImageProcessor
19
+ from diffusers.utils import load_image
20
+
21
+ device = "cuda"
22
+ base_model_id = "SG161222/RealVisXL_V4.0"
23
+ controlnet_model_id = "diffusers/controlnet-depth-sdxl-1.0"
24
+ vae_model_id = "madebyollin/sdxl-vae-fp16-fix"
25
+
26
 
27
+ # load pipe
28
+ controlnet = ControlNetModel.from_pretrained(controlnet_model_id, variant="fp16", use_safetensors=True, torch_dtype=torch.float16)
29
+ vae = AutoencoderKL.from_pretrained(vae_model_id, torch_dtype=torch.float16)
30
+ pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
31
+ base_model_id,
32
+ controlnet=controlnet,
33
+ vae=vae,
34
+ variant="fp16",
35
+ use_safetensors=True,
36
+ torch_dtype=torch.float16,
37
+ )
38
+ pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
39
+ pipe.enable_model_cpu_offload()
40
+ pipe.enable_xformers_memory_efficient_attention()
41
+ pipe.to(device)
42
+
43
+ depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
44
+ feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas")
45
 
 
 
 
 
 
 
 
 
46
 
47
  MAX_SEED = np.iinfo(np.int32).max
48
  MAX_IMAGE_SIZE = 1024
49
 
50
+ USE_TORCH_COMPILE = 0
51
+ ENABLE_CPU_OFFLOAD = 0
52
+
53
 
54
+ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
55
  if randomize_seed:
56
  seed = random.randint(0, MAX_SEED)
57
+ return seed
58
+
59
+
60
+ def get_depth_map(image):
61
+ image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
62
+ with torch.no_grad(), torch.autocast("cuda"):
63
+ depth_map = depth_estimator(image).predicted_depth
64
+
65
+ depth_map = torch.nn.functional.interpolate(
66
+ depth_map.unsqueeze(1),
67
+ size=(1024, 1024),
68
+ mode="bicubic",
69
+ align_corners=False,
70
+ )
71
+ depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
72
+ depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
73
+ depth_map = (depth_map - depth_min) / (depth_max - depth_min)
74
+ image = torch.cat([depth_map] * 3, dim=1)
75
+ image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
76
+ image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
77
  return image
78
 
79
+
80
+
81
+ @spaces.GPU(enable_queue=True)
82
+ def process(orginal_image, image_url, prompt, a_prompt, n_prompt, num_steps, guidance_scale, control_strength, seed):
83
+
84
+ if image_url:
85
+ orginal_image = load_image(image_url)
 
 
 
 
 
 
 
 
 
 
 
 
86
 
87
+ width = 1024
88
+ height = 1024
89
+ depth_image = get_depth_map(orginal_image.resize((1024, 1024)))
90
+ generator = torch.Generator().manual_seed(seed)
91
+ generated_image = self.pipe(
92
+ prompt=prompt,
93
+ negative_prompt=n_prompt,
94
+ width=width,
95
+ height=height,
96
+ guidance_scale=guidance_scale,
97
+ num_inference_steps=num_steps,
98
+ strength=control_strength,
99
+ generator=generator,
100
+ image=depth_image,
101
+ ).images[0]
102
+ return [[depth_image, generated_image], "ok"]
 
 
 
103
 
104
+ with gr.Blocks() as demo:
105
+
106
+ with gr.Row():
107
+ with gr.Column():
108
+ image = gr.Image()
109
+ image_url = gr.Textbox(label="Image Url", placeholder="Enter image URL here (optional)")
110
+ prompt = gr.Textbox(label="Prompt")
111
+ run_button = gr.Button("Run")
 
 
 
 
 
 
 
 
 
 
112
 
113
+ with gr.Accordion("Advanced options", open=True):
 
 
 
 
 
 
 
 
114
 
115
+ num_steps = gr.Slider(label="Number of steps", minimum=1, maximum=100, value=30, step=1)
116
+ guidance_scale = gr.Slider(label="Guidance scale", minimum=0.1, maximum=30.0, value=7.5, step=0.1)
117
+ control_strength = gr.Slider(label="Control Strength", minimum=0.1, maximum=4.0, value=0.8, step=0.1)
118
+ seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
119
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
120
+ a_prompt = gr.Textbox(label="Additional prompt", value="high-quality, extremely detailed, 4K")
121
+ n_prompt = gr.Textbox(
122
+ label="Negative prompt",
123
+ value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
124
  )
125
+ with gr.Column():
126
+ result = ImageSlider(label="Generate image", type="pil", slider_color="pink")
127
+ logs = gr.Textbox(label="logs")
128
 
129
+ inputs = [
130
+ image,
131
+ image_url,
132
+ prompt,
133
+ a_prompt,
134
+ n_prompt,
135
+ num_steps,
136
+ guidance_scale,
137
+ control_strength,
138
+ seed
139
+ ]
 
 
 
 
 
 
 
 
 
 
 
 
140
  run_button.click(
141
+ fn=randomize_seed_fn,
142
+ inputs=[seed, randomize_seed],
143
+ outputs=seed,
144
+ queue=False,
145
+ api_name=False,
146
+ ).then(
147
+ fn=process,
148
+ inputs=inputs,
149
+ outputs=[result, logs],
150
+ api_name=False
151
+ )
152
+ return demo
153
 
154
  demo.queue().launch()
requirements.txt CHANGED
@@ -3,4 +3,10 @@ diffusers
3
  invisible_watermark
4
  torch
5
  transformers
6
- xformers
 
 
 
 
 
 
 
3
  invisible_watermark
4
  torch
5
  transformers
6
+ xformers
7
+ gradio_imageslider
8
+ requests
9
+ spaces
10
+ huggingface_hub
11
+ controlnet-aux
12
+ safetensors