File size: 20,667 Bytes
54c78cf 01f98ad 54c78cf 01f98ad 54c78cf 01f98ad 54c78cf 01f98ad 54c78cf 01f98ad 54c78cf 01f98ad 54c78cf 01f98ad 54c78cf 01f98ad 54c78cf 01f98ad 54c78cf 01f98ad 54c78cf 01f98ad 54c78cf 01f98ad 54c78cf 01f98ad 54c78cf 01f98ad 54c78cf 01f98ad 54c78cf 01f98ad 54c78cf 01f98ad 54c78cf 01f98ad 54c78cf 01f98ad 54c78cf 01f98ad 54c78cf 01f98ad 54c78cf 01f98ad 54c78cf 01f98ad 54c78cf 01f98ad 54c78cf 01f98ad 54c78cf 01f98ad 54c78cf 01f98ad 54c78cf 01f98ad 54c78cf 01f98ad 54c78cf 01f98ad 54c78cf 01f98ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 |
# import gradio as gr
# import os
# import torch
# import spaces
# from llava import conversation as conversation_lib
# from llava.constants import IMAGE_TOKEN_IDX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
# from llava.conversation import conv_templates, SeparatorStyle
# from llava.model.builder import load_pretrained_model
# from llava.utils import disable_torch_init
# from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, process_images
# from PIL import Image
# import argparse
# from transformers import TextIteratorStreamer
# from threading import Thread
# import subprocess
# # Install flash attention, skipping CUDA build if necessary
# subprocess.run(
# "pip install flash-attn --no-build-isolation",
# env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
# shell=True,
# )
# # os.environ['GRADIO_TEMP_DIR'] = './gradio_tmp'
# no_change_btn = gr.Button()
# enable_btn = gr.Button(interactive=True)
# disable_btn = gr.Button(interactive=False)
# argparser = argparse.ArgumentParser()
# argparser.add_argument("--model-path", default="umd-vt-nyu/clip-evaclip-und-gen-sft", type=str)
# argparser.add_argument("--model-base", type=str, default=None)
# argparser.add_argument("--num-gpus", type=int, default=1)
# argparser.add_argument("--conv-mode", type=str, default="llama3")
# argparser.add_argument("--temperature", type=float, default=0.2)
# argparser.add_argument("--max-new-tokens", type=int, default=64)
# argparser.add_argument("--num_frames", type=int, default=16)
# argparser.add_argument("--load-8bit", action="store_true")
# argparser.add_argument("--load-4bit", action="store_true")
# argparser.add_argument("--debug", action="store_true")
# args = argparser.parse_args()
# model_path = args.model_path
# conv_mode = args.conv_mode
# filt_invalid="cut"
# model_name = get_model_name_from_path(args.model_path)
# model_name = 'clip-evaclip-und-gen-sft'
# model_kwargs = {
# "use_cache": False,
# "trust_remote_code": True,
# "torch_dtype": torch.bfloat16,
# "attn_implementation": "sdpa"
# }
# tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, device_map="cuda:0", **model_kwargs)
# our_chatbot = None
# def upvote_last_response(state):
# return ("",) + (disable_btn,) * 3
# def downvote_last_response(state):
# return ("",) + (disable_btn,) * 3
# def flag_last_response(state):
# return ("",) + (disable_btn,) * 3
# def clear_history():
# state =conv_templates[conv_mode].copy()
# return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
# def add_text(state, imagebox, textbox, image_process_mode):
# if state is None:
# state = conv_templates[conv_mode].copy()
# if imagebox is not None:
# textbox = DEFAULT_IMAGE_TOKEN + '\n' + textbox
# image = Image.open(imagebox).convert('RGB')
# if imagebox is not None:
# textbox = (textbox, image, image_process_mode)
# state.append_message(state.roles[0], textbox)
# state.append_message(state.roles[1], None)
# yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
# def delete_text(state, image_process_mode):
# state.messages[-1][-1] = None
# prev_human_msg = state.messages[-2]
# if type(prev_human_msg[1]) in (tuple, list):
# prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
# yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
# def regenerate(state, image_process_mode):
# state.messages[-1][-1] = None
# prev_human_msg = state.messages[-2]
# if type(prev_human_msg[1]) in (tuple, list):
# prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
# state.skip_next = False
# return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
# @spaces.GPU
# def generate(state, imagebox, textbox, image_process_mode, temperature, top_p, max_output_tokens):
# prompt = state.get_prompt()
# images = state.get_images(return_pil=True)
# #prompt, image_args = process_image(prompt, images)
# ori_prompt = prompt
# num_image_tokens = 0
# if images is not None and len(images) > 0:
# if len(images) > 0:
# if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN):
# raise ValueError("Number of images does not match number of <image> tokens in prompt")
# #images = [load_image_from_base64(image) for image in images]
# image_sizes = [image.size for image in images]
# images = process_images(images, image_processor, model.config)
# if type(images) is list:
# images = [image.to(model.device, dtype=torch.float16) for image in images]
# else:
# images = images.to(model.device, dtype=torch.float16)
# else:
# images = None
# image_sizes = None
# image_args = {"images": images, "image_sizes": image_sizes}
# else:
# images = None
# image_args = {}
# max_context_length = getattr(model.config, 'max_position_embeddings', 2048)
# max_new_tokens = 512
# do_sample = True if temperature > 0.001 else False
# stop_str = state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2
# input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_IDX, return_tensors='pt').unsqueeze(0).to(model.device)
# streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15)
# max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens)
# if max_new_tokens < 1:
# # yield json.dumps({"text": ori_prompt + "Exceeds max token length. Please start a new conversation, thanks.", "error_code": 0}).encode() + b"\0"
# return
# thread = Thread(target=model.generate, kwargs=dict(
# inputs=input_ids,
# do_sample=do_sample,
# temperature=temperature,
# top_p=top_p,
# max_new_tokens=max_new_tokens,
# streamer=streamer,
# use_cache=True,
# pad_token_id=tokenizer.eos_token_id,
# **image_args
# ))
# thread.start()
# generated_text = ''
# for new_text in streamer:
# generated_text += new_text
# if generated_text.endswith(stop_str):
# generated_text = generated_text[:-len(stop_str)]
# state.messages[-1][-1] = generated_text
# yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
# yield (state, state.to_gradio_chatbot(), "", None) + (enable_btn,) * 5
# torch.cuda.empty_cache()
# txt = gr.Textbox(
# scale=4,
# show_label=False,
# placeholder="Enter text and press enter.",
# container=False,
# )
# title_markdown = ("""
# # Florence-llama
# [[Code](TBD)] [[Model](TBD)] | π [[Arxiv](TBD)]]
# """)
# # title_markdown = ("""
# # # Florence-llama
# # """)
# tos_markdown = ("""
# ### Terms of use
# By using this service, users are required to agree to the following terms:
# The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
# Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
# For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
# """)
# learn_more_markdown = ("""
# ### License
# The service is a research preview intended for non-commercial use only, subject to the. Please contact us if you find any potential violation.
# """)
# block_css = """
# #buttons button {
# min-width: min(120px,100%);
# }
# """
# textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
# with gr.Blocks(title="llava", theme=gr.themes.Default(), css=block_css) as demo:
# state = gr.State()
# gr.Markdown(title_markdown)
# with gr.Row():
# with gr.Column(scale=3):
# imagebox = gr.Image(label="Input Image", type="filepath")
# image_process_mode = gr.Radio(
# ["Crop", "Resize", "Pad", "Default"],
# value="Default",
# label="Preprocess for non-square image", visible=False)
# cur_dir = os.path.dirname(os.path.abspath(__file__))
# # gr.Examples(examples=[
# # [f"{cur_dir}/assets/health-insurance.png", "Under which circumstances do I need to be enrolled in mandatory health insurance if I am an international student?"],
# # [f"{cur_dir}/assets/leasing-apartment.png", "I don't have any 3rd party renter's insurance now. Do I need to get one for myself?"],
# # [f"{cur_dir}/assets/nvidia.jpeg", "Who is the person in the middle?"],
# # [f"{cur_dir}/assets/animal-compare.png", "Are these two pictures showing the same kind of animal?"],
# # [f"{cur_dir}/assets/georgia-tech.jpeg", "Where is this photo taken?"]
# # ], inputs=[imagebox, textbox], cache_examples=False)
# gr.Examples(examples=[
# [f"{cur_dir}/assets/animal-compare.png", "Provide a detailed description of the given image."]
# ], inputs=[imagebox, textbox], cache_examples=False)
# with gr.Accordion("Parameters", open=False) as parameter_row:
# temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",)
# top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",)
# max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)
# with gr.Column(scale=8):
# chatbot = gr.Chatbot(
# elem_id="chatbot",
# label="llava Chatbot",
# height=650,
# layout="panel",
# )
# with gr.Row():
# with gr.Column(scale=8):
# textbox.render()
# with gr.Column(scale=1, min_width=50):
# submit_btn = gr.Button(value="Send", variant="primary")
# with gr.Row(elem_id="buttons") as button_row:
# upvote_btn = gr.Button(value="π Upvote", interactive=False)
# downvote_btn = gr.Button(value="π Downvote", interactive=False)
# flag_btn = gr.Button(value="β οΈ Flag", interactive=False)
# stop_btn = gr.Button(value="βΉοΈ Stop Generation", interactive=False)
# regenerate_btn = gr.Button(value="π Regenerate", interactive=False)
# clear_btn = gr.Button(value="ποΈ Clear", interactive=False)
# gr.Markdown(tos_markdown)
# gr.Markdown(learn_more_markdown)
# url_params = gr.JSON(visible=False)
# # Register listeners
# btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
# upvote_btn.click(
# upvote_last_response,
# [state],
# [textbox, upvote_btn, downvote_btn, flag_btn]
# )
# downvote_btn.click(
# downvote_last_response,
# [state],
# [textbox, upvote_btn, downvote_btn, flag_btn]
# )
# flag_btn.click(
# flag_last_response,
# [state],
# [textbox, upvote_btn, downvote_btn, flag_btn]
# )
# clear_btn.click(
# clear_history,
# None,
# [state, chatbot, textbox, imagebox] + btn_list,
# queue=False
# )
# regenerate_btn.click(
# delete_text,
# [state, image_process_mode],
# [state, chatbot, textbox, imagebox] + btn_list,
# ).then(
# generate,
# [state, imagebox, textbox, image_process_mode, temperature, top_p, max_output_tokens],
# [state, chatbot, textbox, imagebox] + btn_list,
# )
# textbox.submit(
# add_text,
# [state, imagebox, textbox, image_process_mode],
# [state, chatbot, textbox, imagebox] + btn_list,
# ).then(
# generate,
# [state, imagebox, textbox, image_process_mode, temperature, top_p, max_output_tokens],
# [state, chatbot, textbox, imagebox] + btn_list,
# )
# submit_btn.click(
# add_text,
# [state, imagebox, textbox, image_process_mode],
# [state, chatbot, textbox, imagebox] + btn_list,
# ).then(
# generate,
# [state, imagebox, textbox, image_process_mode, temperature, top_p, max_output_tokens],
# [state, chatbot, textbox, imagebox] + btn_list,
# )
# demo.queue(
# status_update_rate=10,
# api_open=False
# ).launch()
import gradio as gr
import os
import torch
import argparse
from transformers import TextIteratorStreamer
from threading import Thread
from PIL import Image
from llava import conversation as conversation_lib
from llava.constants import *
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, process_images
from diffusers import DiffusionPipeline
# Define paths and configurations
# diffusion_path = "/export/jchen169/hub/models--BAAI--Emu2-Gen/snapshots/a41a2dcd777a68225dddc72c7213b064ee06f4a0"
argparser = argparse.ArgumentParser()
argparser.add_argument("--model-path", default="umd-vt-nyu/clip-evaclip-und-gen-sft-3v", type=str)
argparser.add_argument("--conv-mode", type=str, default="llama3")
argparser.add_argument("--temperature", type=float, default=0.2)
argparser.add_argument("--max-new-tokens", type=int, default=64)
argparser.add_argument("--num_frames", type=int, default=16)
argparser.add_argument("--load-8bit", action="store_true")
argparser.add_argument("--load-4bit", action="store_true")
argparser.add_argument("--debug", action="store_true")
args = argparser.parse_args()
# Load LLaVA model
disable_torch_init()
model_name = get_model_name_from_path(args.model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, None, model_name)
our_chatbot = None
# Load Diffusion model for image generation
pipe = DiffusionPipeline.from_pretrained(
'BAAI/Emu2-Gen',
custom_pipeline="pipeline_llava_gen",
torch_dtype=torch.bfloat16,
use_safetensors=True,
variant="bf16",
multimodal_encoder=model,
tokenizer=tokenizer,
)
pipe.vae.to("cuda:0")
pipe.unet.to("cuda:0")
pipe.safety_checker.to("cuda:0")
def upvote_last_response(state):
return ("",) + (disable_btn,) * 3
def downvote_last_response(state):
return ("",) + (disable_btn,) * 3
def flag_last_response(state):
return ("",) + (disable_btn,) * 3
def clear_history():
state = conv_templates[conv_mode].copy()
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
def add_text(state, imagebox, textbox, image_process_mode):
if state is None:
state = conv_templates[conv_mode].copy()
if imagebox is not None:
textbox = DEFAULT_IMAGE_TOKEN + '\n' + textbox
image = Image.open(imagebox).convert('RGB')
if imagebox is not None:
textbox = (textbox, image, image_process_mode)
state.append_message(state.roles[0], textbox)
state.append_message(state.roles[1], None)
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
def generate(state, imagebox, textbox, image_process_mode, temperature, top_p, max_output_tokens):
prompt = state.get_prompt()
images = state.get_images(return_pil=True)
ori_prompt = prompt
num_image_tokens = 0
if images is not None and len(images) > 0:
if len(images) > 0:
if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN):
raise ValueError("Number of images does not match number of <image> tokens in prompt")
image_sizes = [image.size for image in images]
images = process_images(images, image_processor, model.config)
if type(images) is list:
images = [image.to(model.device, dtype=torch.float16) for image in images]
else:
images = images.to(model.device, dtype=torch.float16)
else:
images = None
image_sizes = None
image_args = {"images": images, "image_sizes": image_sizes}
else:
images = None
image_args = {}
max_context_length = getattr(model.config, 'max_position_embeddings', 2048)
max_new_tokens = 512
do_sample = True if temperature > 0.001 else False
stop_str = state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_IDX, return_tensors='pt').unsqueeze(0).to(model.device)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15)
max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens)
if max_new_tokens < 1:
return
thread = Thread(target=model.generate, kwargs=dict(
inputs=input_ids,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens,
streamer=streamer,
use_cache=True,
pad_token_id=tokenizer.eos_token_id,
**image_args
))
thread.start()
generated_text = ''
for new_text in streamer:
generated_text += new_text
if generated_text.endswith(stop_str):
generated_text = generated_text[:-len(stop_str)]
state.messages[-1][-1] = generated_text
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
yield (state, state.to_gradio_chatbot(), "", None) + (enable_btn,) * 5
torch.cuda.empty_cache()
def add_template(prompt):
conv = conv_templates['llama3'].copy()
conv.append_message(conv.roles[0], prompt[0])
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
return [prompt]
def generate_image(prompt):
prompt = add_template(prompt)
gen_img = pipe(prompt, guidance_scale=3.0)
return gen_img.image
# Interface setup
with gr.Blocks(title="LLaVA Chatbot with Image Generation") as demo:
state = gr.State()
gr.Markdown("# LLaVA Chatbot with Image Generation")
with gr.Row():
with gr.Column(scale=3):
imagebox = gr.Image(label="Input Image", type="filepath")
image_process_mode = gr.Radio(
["Crop", "Resize", "Pad", "Default"],
value="Default",
label="Preprocess for non-square image", visible=False)
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature")
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P")
max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens")
with gr.Column(scale=8):
chatbot = gr.Chatbot(label="LLaVA Chatbot", height=650, layout="panel")
textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
submit_btn = gr.Button(value="Send", variant="primary")
with gr.Row() as button_row:
clear_btn = gr.Button(value="ποΈ Clear", interactive=False)
# Define actions
submit_btn.click(
lambda state, imagebox, textbox, image_process_mode, temperature, top_p, max_output_tokens: (
generate_image([textbox]) if "generate image" in textbox.lower() else add_text(
state, imagebox, textbox, image_process_mode)),
[state, imagebox, textbox, image_process_mode, temperature, top_p, max_output_tokens],
[state, chatbot, textbox, imagebox]
)
demo.queue(status_update_rate=10, api_open=False).launch()
|