jjeamin's picture
Update IU
58d9c60
raw
history blame
4.22 kB
import os
from huggingface_hub import hf_hub_download
os.system("pip -qq install facenet_pytorch")
from facenet_pytorch import MTCNN
from torchvision import transforms
import torch, PIL
from tqdm.notebook import tqdm
import gradio as gr
import torch
device = "cuda:0" if torch.cuda.is_available() else "cpu"
image_size = 512
means = [0.5, 0.5, 0.5]
stds = [0.5, 0.5, 0.5]
model_path = hf_hub_download(repo_id="jjeamin/ArcaneStyleTransfer", filename="pytorch_model.bin")
if 'cuda' in device:
style_transfer = torch.jit.load(model_path).eval().cuda().half()
t_stds = torch.tensor(stds).cuda().half()[:,None,None]
t_means = torch.tensor(means).cuda().half()[:,None,None]
else:
style_transfer = torch.jit.load(model_path).eval().cpu()
t_stds = torch.tensor(stds).cpu()[:,None,None]
t_means = torch.tensor(means).cpu()[:,None,None]
mtcnn = MTCNN(image_size=image_size, margin=80)
def detect(img):
# Detect faces
batch_boxes, batch_probs, batch_points = mtcnn.detect(img, landmarks=True)
# Select faces
if not mtcnn.keep_all:
batch_boxes, batch_probs, batch_points = mtcnn.select_boxes(
batch_boxes, batch_probs, batch_points, img, method=mtcnn.selection_method
)
return batch_boxes, batch_points
def makeEven(_x):
return _x if (_x % 2 == 0) else _x+1
def scale(boxes, _img, max_res=1_500_000, target_face=256, fixed_ratio=0, max_upscale=2, VERBOSE=False):
x, y = _img.size
ratio = 2 #initial ratio
#scale to desired face size
if (boxes is not None):
if len(boxes)>0:
ratio = target_face/max(boxes[0][2:]-boxes[0][:2]);
ratio = min(ratio, max_upscale)
if VERBOSE: print('up by', ratio)
if fixed_ratio>0:
if VERBOSE: print('fixed ratio')
ratio = fixed_ratio
x*=ratio
y*=ratio
#downscale to fit into max res
res = x*y
if res > max_res:
ratio = pow(res/max_res,1/2);
if VERBOSE: print(ratio)
x=int(x/ratio)
y=int(y/ratio)
#make dimensions even, because usually NNs fail on uneven dimensions due skip connection size mismatch
x = makeEven(int(x))
y = makeEven(int(y))
size = (x, y)
return _img.resize(size)
def scale_by_face_size(_img, max_res=1_500_000, target_face=256, fix_ratio=0, max_upscale=2, VERBOSE=False):
boxes = None
boxes, _ = detect(_img)
if VERBOSE: print('boxes',boxes)
img_resized = scale(boxes, _img, max_res, target_face, fix_ratio, max_upscale, VERBOSE)
return img_resized
img_transforms = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(means, stds)])
def tensor2im(var):
return var.mul(t_stds).add(t_means).mul(255.).clamp(0,255).permute(1,2,0)
def proc_pil_img(input_image):
if 'cuda' in device:
transformed_image = img_transforms(input_image)[None,...].cuda().half()
else:
transformed_image = img_transforms(input_image)[None,...].cpu()
with torch.no_grad():
result_image = style_transfer(transformed_image)[0]
output_image = tensor2im(result_image)
output_image = output_image.detach().cpu().numpy().astype('uint8')
output_image = PIL.Image.fromarray(output_image)
return output_image
def process(im):
im = scale_by_face_size(im, target_face=image_size, max_res=1_500_000, max_upscale=1)
res = proc_pil_img(im)
return res
gr.Interface(
process,
inputs=gr.inputs.Image(type="pil", label="Input", shape=(image_size, image_size)),
outputs=gr.outputs.Image(type="pil", label="Output"),
title="Arcane Style Transfer",
description="Gradio demo for Arcane Style Transfer",
article = "<p style='text-align: center'><a href='https://github.com/jjeamin/anime_style_transfer_pytorch' target='_blank'>Github Repo Pytorch by jjeamin</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=jjeamin_arcane_st' alt='visitor badge'></center></p>",
examples=[['billie.png'], ['gongyoo.jpeg'], ['IU.png']],
enable_queue=True,
allow_flagging=False,
allow_screenshot=False
).launch(enable_queue=True,cache_examples=True)