oe-eval-bcb-lite-evaluator / api /code_execution.py
jjyang7's picture
Update api/code_execution.py
629ebf3 verified
raw
history blame
16.2 kB
# The MIT License
#
# Copyright (c) OpenAI (https://openai.com)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
import contextlib
import faulthandler
import tempfile
import platform
import itertools
import io
import os
import sys
import time
import types
import unittest
import subprocess
import signal
import multiprocessing
from multiprocessing import Value, Manager
from typing import List, Tuple, Union
import numpy as np
TIMEOUT_LIMIT=120.0 # BCB default is 240.0
@contextlib.contextmanager
def swallow_subprocess_output():
"""Context manager to swallow stdout and stderr for subprocesses."""
original_popen = subprocess.Popen
original_run = subprocess.run
def _popen_patch(*args, **kwargs):
if 'capture_output' in kwargs and kwargs['capture_output']:
# Avoid setting stdout or stderr if capture_output is True
kwargs.pop('stdout', None)
kwargs.pop('stderr', None)
else:
kwargs.setdefault('stdout', subprocess.PIPE)
kwargs.setdefault('stderr', subprocess.PIPE)
return original_popen(*args, **kwargs)
def _run_patch(*args, **kwargs):
if 'capture_output' in kwargs and kwargs['capture_output']:
# Avoid setting stdout or stderr if capture_output is True
kwargs.pop('stdout', None)
kwargs.pop('stderr', None)
else:
kwargs.setdefault('stdout', subprocess.PIPE)
kwargs.setdefault('stderr', subprocess.PIPE)
return original_run(*args, **kwargs)
subprocess.Popen = _popen_patch
subprocess.run = _run_patch
try:
yield
finally:
subprocess.Popen = original_popen
subprocess.run = original_run
@contextlib.contextmanager
def swallow_io():
stream = WriteOnlyStringIO()
with contextlib.redirect_stdout(stream):
with contextlib.redirect_stderr(stream):
with redirect_stdin(stream):
with swallow_subprocess_output():
yield
@contextlib.contextmanager
def time_limit(seconds: float):
def signal_handler(signum, frame):
raise TimeoutException("Timed out!")
signal.setitimer(signal.ITIMER_REAL, seconds)
signal.signal(signal.SIGALRM, signal_handler)
try:
yield
finally:
signal.setitimer(signal.ITIMER_REAL, 0)
@contextlib.contextmanager
def create_tempdir():
with tempfile.TemporaryDirectory() as dirname:
with chdir(dirname):
yield dirname
@contextlib.contextmanager
def chdir(root):
if root == ".":
yield
return
cwd = os.getcwd()
os.chdir(root)
try:
yield
except BaseException as exc:
raise exc
finally:
os.chdir(cwd)
@contextlib.contextmanager
def safe_environment():
# Save original functions
original_kill = os.kill
original_killpg = os.killpg
original_system = os.system
original_subprocess_call = subprocess.call
original_subprocess_check_output = subprocess.check_output
original_subprocess_run = subprocess.run
original_subprocess_popen = subprocess.Popen
original_os_popen = os.popen
original_os_execv = os.execv
original_os_execvp = os.execvp
original_os_execvpe = os.execvpe
current_pid = os.getpid()
current_pgid = os.getpgid(current_pid)
manager = multiprocessing.Manager()
child_pids = manager.list()
def safe_kill(pid, sig):
try:
pgid = os.getpgid(pid)
if pid == current_pid or pid in child_pids:
original_kill(pid, sig)
else:
print(f"Prevented attempt to kill PID {pid} with signal {sig}")
except ProcessLookupError:
pass
def safe_killpg(pgid, sig):
if pgid == current_pgid or pgid in {os.getpgid(pid) for pid in child_pids}:
original_killpg(pgid, sig)
else:
print(f"Prevented attempt to kill PGID {pgid} with signal {sig}")
def safe_system(command):
print(f"Intercepted system command: {command}")
if 'kill' in command or 'killall' in command:
return 0 # Simulate successful execution without doing anything
return original_system(command)
def safe_subprocess_call(command, *args, **kwargs):
print(f"Intercepted subprocess call: {command}")
if 'kill' in command or 'killall' in command:
return 0 # Simulate successful execution without doing anything
return original_subprocess_call(command, *args, **kwargs)
def safe_subprocess_check_output(command, *args, **kwargs):
print(f"Intercepted command: {command}")
if 'ps' in command:
return b"" # Simulate no processes found
return original_subprocess_check_output(command, *args, **kwargs)
def safe_subprocess_run(*args, **kwargs):
print(f"Intercepted subprocess run command: {args}")
if 'kill' in args[0] or 'killall' in args[0]:
return subprocess.CompletedProcess(args, 0, b'', b'') # Simulate successful execution
return original_subprocess_run(*args, **kwargs)
class SafePopen(subprocess.Popen):
def __init__(self, *args, **kwargs):
print(f"Intercepted Popen command: {args}")
kwargs['preexec_fn'] = os.setsid # Start the process in a new session
super().__init__(*args, **kwargs)
child_pids.append(self.pid)
def communicate(self, *args, **kwargs):
try:
return super().communicate(*args, **kwargs)
except subprocess.TimeoutExpired:
print("Timeout expired, intercepted and returning None")
return None, None
def kill(self):
print(f"Intercepted kill call for PID {self.pid}")
safe_kill(self.pid, signal.SIGTERM)
def terminate(self):
print(f"Intercepted terminate call for PID {self.pid}")
safe_kill(self.pid, signal.SIGTERM)
def safe_os_popen(command):
print(f"Intercepted os.popen command: {command}")
if 'kill' in command or 'killall' in command:
return os.popen('echo Intercepted')
return original_os_popen(command)
def safe_exec(*args, **kwargs):
print(f"Intercepted exec command: {args}")
# Override the risky functions with the safe versions
os.kill = safe_kill
os.killpg = safe_killpg
os.system = safe_system
subprocess.call = safe_subprocess_call
subprocess.check_output = safe_subprocess_check_output
subprocess.run = safe_subprocess_run
subprocess.Popen = SafePopen
os.popen = safe_os_popen
os.execv = safe_exec
os.execvp = safe_exec
os.execvpe = safe_exec
try:
yield
finally:
for pid in child_pids:
try:
os.kill(pid, signal.SIGTERM)
for _ in range(10):
time.sleep(0.1)
try:
os.kill(pid, 0)
except ProcessLookupError:
break
else:
os.kill(pid, signal.SIGKILL)
except ProcessLookupError:
pass
except Exception as e:
print(f"Error handling process {pid}: {e}")
os.kill = original_kill
os.killpg = original_killpg
os.system = original_system
subprocess.call = original_subprocess_call
subprocess.check_output = original_subprocess_check_output
subprocess.run = original_subprocess_run
subprocess.Popen = original_subprocess_popen
os.popen = original_os_popen
os.execv = original_os_execv
os.execvp = original_os_execvp
os.execvpe = original_os_execvpe
class TimeoutException(Exception):
pass
class WriteOnlyStringIO(io.StringIO):
"""StringIO that throws an exception when it's read from"""
def read(self, *args, **kwargs):
raise IOError
def readline(self, *args, **kwargs):
raise IOError
def readlines(self, *args, **kwargs):
raise IOError
def readable(self, *args, **kwargs):
"""Returns True if the IO object can be read."""
return False
class redirect_stdin(contextlib._RedirectStream): # type: ignore
_stream = "stdin"
def reliability_guard(max_as_limit, max_data_limit, max_stack_limit):
"""
This disables various destructive functions and prevents the generated code
from interfering with the test (e.g. fork bomb, killing other processes,
removing filesystem files, etc.)
WARNING
This function is NOT a security sandbox. Untrusted code, including, model-
generated code, should not be blindly executed outside of one. See the
Codex paper for more information about OpenAI's code sandbox, and proceed
with caution.
"""
import os
import time
from datetime import datetime
os.environ['TZ'] = 'UTC'
time.tzset()
os.environ["OMP_NUM_THREADS"] = "1"
os.environ['TF_CPP_MIN_LOG_LEVEL'] = "3"
os.environ['TF_ENABLE_ONEDNN_OPTS'] = "0"
if max_as_limit and max_data_limit and max_stack_limit:
import resource
max_as_limit = max_as_limit * 1024 * 1024
max_data_limit = max_data_limit * 1024 * 1024
max_stack_limit = max_stack_limit * 1024 * 1024
resource.setrlimit(
resource.RLIMIT_AS, (max_as_limit, max_as_limit)
)
resource.setrlimit(
resource.RLIMIT_DATA, (max_data_limit, max_data_limit)
)
if not platform.uname().system == "Darwin":
resource.setrlimit(
resource.RLIMIT_STACK, (max_stack_limit, max_stack_limit)
)
faulthandler.disable()
import builtins
builtins.exit = None
builtins.quit = None
import matplotlib.pyplot as plt
plt.close('all')
# unbiased estimator from https://github.com/openai/human-eval
def estimate_pass_at_k(
num_samples: Union[int, List[int], np.ndarray],
num_correct: Union[List[int], np.ndarray],
k: int,
) -> np.ndarray:
"""
Estimates pass@k of each problem and returns them in an array.
"""
def estimator(n: int, c: int, k: int) -> float:
"""
Calculates 1 - comb(n - c, k) / comb(n, k).
"""
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1))
if isinstance(num_samples, int):
num_samples_it = itertools.repeat(num_samples, len(num_correct))
else:
assert len(num_samples) == len(num_correct)
num_samples_it = iter(num_samples)
return np.array(
[estimator(int(n), int(c), k) for n, c in zip(num_samples_it, num_correct)]
)
PASS = "pass"
FAIL = "fail"
TIMEOUT = "timeout"
_SUCCESS = 0
_FAILED = 1
_TIMEOUT = 2
_UNKNOWN = 3
_mapping = {_SUCCESS: PASS, _FAILED: FAIL, _TIMEOUT: TIMEOUT, _UNKNOWN: None}
def is_floats(x) -> bool:
# check if it is float; List[float]; Tuple[float]
if isinstance(x, float):
return True
if isinstance(x, (list, tuple)):
return all(isinstance(i, float) for i in x)
if isinstance(x, np.ndarray):
return x.dtype == np.float64 or x.dtype == np.float32
return False
def unsafe_execute(
entry_point: str,
code: str,
test_code: str,
timeout: float,
max_as_limit: float,
max_data_limit: float,
max_stack_limit: float,
stat, # Value
details, # Array
):
with safe_environment(), create_tempdir():
# These system calls are needed when cleaning up tempdir.
import os
import shutil
import builtins
rmtree = shutil.rmtree
rmdir = os.rmdir
chdir = os.chdir
# Disable functionalities that can make destructive changes to the test.
reliability_guard(max_as_limit, max_data_limit, max_stack_limit)
module_name = "__test__"
new_module = types.ModuleType(module_name)
# Set necessary attributes for the module
new_module.__dict__.update({
'__builtins__': builtins,
'__file__': f"{module_name}.py",
'__package__': None,
'__doc__': None,
'sys': sys,
'os': os,
'environ': os.environ,
})
try:
full_code = code + "\n" + test_code
with swallow_io():
exec(compile(full_code, f"{module_name}.py", 'exec'), new_module.__dict__)
sys.modules[module_name] = new_module
TestCases = getattr(new_module, 'TestCases')
loader = unittest.TestLoader()
suite = loader.loadTestsFromTestCase(TestCases)
test_result = unittest.TestResult()
start_time = time.time()
with time_limit(timeout):
suite.run(test_result)
issues = test_result.failures + test_result.errors
for test, trace in issues:
details[test.id().split(".")[-1]] = trace
stat.value = _SUCCESS
except BaseException as e:
details["ALL"] = str(e)
stat.value = _FAILED
# Needed for cleaning up.
shutil.rmtree = rmtree
os.rmdir = rmdir
os.chdir = chdir
def untrusted_check(
code: str,
test_code: str,
entry_point: str,
max_as_limit: float,
max_data_limit: float,
max_stack_limit: float,
min_time_limit: float = 10,
gt_time_limit: float = 60
) -> Tuple[str, np.ndarray]:
min_time_limit = max(min_time_limit, gt_time_limit)
timeout = max(os.getenv("BIGCODEBENCH_TIMEOUT_PER_TASK", TIMEOUT_LIMIT), min_time_limit) + 1
# shared memory objects
stat = Value("i", _UNKNOWN)
manager = Manager()
details = manager.dict()
p = multiprocessing.Process(
target=unsafe_execute,
args=(
entry_point,
code,
test_code,
timeout,
max_as_limit,
max_data_limit,
max_stack_limit,
stat,
details,
),
)
p.start()
p.join(timeout=timeout+1)
if p.is_alive():
p.terminate()
time.sleep(0.1)
if p.is_alive():
p.kill()
time.sleep(0.1)
stat = _mapping[stat.value]
# convert details to a dict
details = dict(details)
if not stat:
stat = TIMEOUT
if stat == PASS:
if details:
stat = FAIL
return stat, details
def evaluate_files(
files: List[str],
inputs: List,
entry_point: str,
min_time_limit: float = 0.1,
gt_time_limit_factor: float = 2.0,
) -> List[Tuple[str, List[bool]]]:
ret = []
# sort files by the id in name (i.e., "../n.py")
files = sorted(files, key=lambda x: int(x.split("/")[-1].split(".")[0]))
for file in files:
code = open(file, "r").read()
stat, det = untrusted_check(
code,
inputs,
entry_point,
)
ret.append((stat, det.tolist()))
return ret