File size: 13,485 Bytes
9ff1108
 
 
 
 
 
 
 
 
 
21db8ab
9ff1108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# !/usr/bin/env python3
"""
codes for oilpainting style transfer.
"""
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import numpy as np
from PIL import Image
import math
# import cv2
import render_utils
import time


def get_single_layer_lists(param, decision, ori_img, render_size_x, render_size_y, h, w, meta_brushes, dilation, erosion, stroke_num):
    """
    get_single_layer_lists
    """
    valid_foregrounds = render_utils.param2stroke(param[:, :], render_size_y, render_size_x, meta_brushes)

    valid_alphas = (valid_foregrounds > 0).astype('float32')
    valid_foregrounds = valid_foregrounds.reshape([-1, stroke_num, 1, render_size_y, render_size_x])
    valid_alphas = valid_alphas.reshape([-1, stroke_num, 1, render_size_y, render_size_x])

    temp = [dilation(valid_foregrounds[:, i, :, :, :]) for i in range(stroke_num)]
    valid_foregrounds = paddle.stack(temp, axis=1)
    valid_foregrounds = valid_foregrounds.reshape([-1, 1, render_size_y, render_size_x])

    temp = [erosion(valid_alphas[:, i, :, :, :]) for i in range(stroke_num)]
    valid_alphas = paddle.stack(temp, axis=1)
    valid_alphas = valid_alphas.reshape([-1, 1, render_size_y, render_size_x])

    patch_y = 4 * render_size_y // 5
    patch_x = 4 * render_size_x // 5

    img_patch = ori_img.reshape([1, 3, h, ori_img.shape[2]//h, w, ori_img.shape[3]//w])
    img_patch = img_patch.transpose([0, 2, 4, 1, 3, 5])[0]

    xid_list = []
    yid_list = []
    error_list = []

    for flag_idx, flag in enumerate(decision.cpu().numpy()):
        if flag:
            flag_idx = flag_idx // stroke_num
            x_id = flag_idx % w
            flag_idx = flag_idx // w
            y_id = flag_idx % h
            xid_list.append(x_id)
            yid_list.append(y_id)
    
    inner_fores = valid_foregrounds[:, :, render_size_y // 10:9 * render_size_y // 10, 
                                    render_size_x // 10:9 * render_size_x // 10]
    inner_alpha = valid_alphas[:, :, render_size_y // 10:9 * render_size_y // 10, 
                                    render_size_x // 10:9 * render_size_x // 10]
    inner_fores = inner_fores.reshape([h * w, stroke_num, 1, patch_y, patch_x])
    inner_alpha = inner_alpha.reshape([h * w, stroke_num, 1, patch_y, patch_x])
    inner_real = img_patch.reshape([h * w, 3, patch_y, patch_x]).unsqueeze(1)

    R = param[:, 5]
    G = param[:, 6]
    B = param[:, 7]#, G, B = param[5:]
    R = R.reshape([-1, stroke_num]).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
    G = G.reshape([-1, stroke_num]).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
    B = B.reshape([-1, stroke_num]).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
    error_R = R * inner_fores - inner_real[:, :, 0:1, :, :]
    error_G = G * inner_fores - inner_real[:, :, 1:2, :, :]
    error_B = B * inner_fores - inner_real[:, :, 2:3, :, :]
    error = paddle.abs(error_R) + paddle.abs(error_G)+ paddle.abs(error_B)

    error = error * inner_alpha
    error = paddle.sum(error, axis=(2, 3, 4)) / paddle.sum(inner_alpha, axis=(2, 3, 4))
    error_list = error.reshape([-1]).numpy()[decision.numpy()]
    error_list = list(error_list)

    valid_foregrounds = paddle.to_tensor(valid_foregrounds.numpy()[decision.numpy()])
    valid_alphas = paddle.to_tensor(valid_alphas.numpy()[decision.numpy()])
    
    selected_param = paddle.to_tensor(param.numpy()[decision.numpy()])
    return xid_list, yid_list, valid_foregrounds, valid_alphas, error_list, selected_param


def get_single_stroke_on_full_image_A(x_id, y_id, valid_foregrounds, valid_alphas, param, original_img, 
                                        render_size_x, render_size_y, patch_x, patch_y):
    """
    get_single_stroke_on_full_image_A
    """
    tmp_foreground = paddle.zeros_like(original_img)

    patch_y_num = original_img.shape[2] // patch_y
    patch_x_num = original_img.shape[3] // patch_x

    brush = valid_foregrounds.unsqueeze(0)
    color_map = param[5:]
    brush = brush.tile([1, 3, 1, 1])
    color_map = color_map.unsqueeze(-1).unsqueeze(-1).unsqueeze(0)#.repeat(1, 1, H, W)
    brush = brush * color_map

    pad_l = x_id * patch_x
    pad_r = (patch_x_num - x_id - 1) * patch_x
    pad_t = y_id * patch_y
    pad_b = (patch_y_num - y_id - 1) * patch_y
    tmp_foreground = nn.functional.pad(brush, [pad_l, pad_r, pad_t, pad_b])
    tmp_foreground = tmp_foreground[:, :, render_size_y // 10:-render_size_y // 10, 
                                    render_size_x // 10:-render_size_x // 10]
   
    tmp_alpha = nn.functional.pad(valid_alphas.unsqueeze(0), [pad_l, pad_r, pad_t, pad_b])
    tmp_alpha = tmp_alpha[:, :, render_size_y // 10:-render_size_y // 10, render_size_x // 10:-render_size_x // 10]
    return tmp_foreground, tmp_alpha

def get_single_stroke_on_full_image_B(x_id, y_id, valid_foregrounds, valid_alphas, param, 
                                        original_img, render_size_x, render_size_y, patch_x, patch_y):
    """
    get_single_stroke_on_full_image_B
    """
    x_expand = patch_x // 2 + render_size_x // 10
    y_expand = patch_y // 2 + render_size_y // 10

    pad_l = x_id * patch_x
    pad_r = original_img.shape[3] + 2 * x_expand - (x_id * patch_x + render_size_x)
    pad_t = y_id * patch_y
    pad_b = original_img.shape[2] + 2 * y_expand - (y_id * patch_y + render_size_y)

    brush = valid_foregrounds.unsqueeze(0)
    color_map = param[5:]
    brush = brush.tile([1, 3, 1, 1])
    color_map = color_map.unsqueeze(-1).unsqueeze(-1).unsqueeze(0)#.repeat(1, 1, H, W)
    brush = brush * color_map

    tmp_foreground = nn.functional.pad(brush, [pad_l, pad_r, pad_t, pad_b])

    tmp_foreground = tmp_foreground[:, :, y_expand:- y_expand, x_expand:-x_expand]
    tmp_alpha = nn.functional.pad(valid_alphas.unsqueeze(0), [pad_l, pad_r, pad_t, pad_b])
    tmp_alpha = tmp_alpha[:, :, y_expand:- y_expand, x_expand:-x_expand]
    return tmp_foreground, tmp_alpha

def stroke_net_predict(img_patch, result_patch, patch_size, net_g, stroke_num):
    """
    stroke_net_predict
    """
    img_patch = img_patch.transpose([0, 2, 1]).reshape([-1, 3, patch_size, patch_size])
    result_patch = result_patch.transpose([0, 2, 1]).reshape([-1, 3, patch_size, patch_size])
    #*----- Stroke Predictor -----*#
    shape_param, stroke_decision = net_g(img_patch, result_patch)
    stroke_decision = (stroke_decision > 0).astype('float32')
    #*----- sampling color -----*#
    grid = shape_param[:, :, :2].reshape([img_patch.shape[0] * stroke_num, 1, 1, 2])
    img_temp = img_patch.unsqueeze(1).tile([1, stroke_num, 1, 1, 1]).reshape([
        img_patch.shape[0] * stroke_num, 3, patch_size, patch_size])
    color = nn.functional.grid_sample(img_temp, 2 * grid - 1, align_corners=False).reshape([
        img_patch.shape[0], stroke_num, 3])
    stroke_param = paddle.concat([shape_param, color], axis=-1)

    param = stroke_param.reshape([-1, 8])
    decision = stroke_decision.reshape([-1]).astype('bool')
    param[:, :2] = param[:, :2] / 1.25 + 0.1
    param[:, 2:4] = param[:, 2:4] / 1.25
    return param, decision


def sort_strokes(params, decision, scores):
    """
    sort_strokes
    """
    sorted_scores, sorted_index = paddle.sort(scores, axis=1, descending=False)
    sorted_params = []
    for idx in range(8):
        tmp_pick_params = paddle.gather(params[:, :, idx], axis=1, index=sorted_index)
        sorted_params.append(tmp_pick_params)
    sorted_params = paddle.stack(sorted_params, axis=2)
    sorted_decison = paddle.gather(decision.squeeze(2), axis=1, index=sorted_index)
    return sorted_params, sorted_decison


def render_serial(original_img, net_g, meta_brushes):

    patch_size = 32
    stroke_num = 8
    H, W = original_img.shape[-2:]
    K = max(math.ceil(math.log2(max(H, W) / patch_size)), 0)

    dilation = render_utils.Dilation2d(m=1)
    erosion = render_utils.Erosion2d(m=1)
    frames_per_layer = [20, 20, 30, 40, 60]
    final_frame_list = []

    with paddle.no_grad():
        #* ----- read in image and init canvas ----- *#
        final_result = paddle.zeros_like(original_img)

        for layer in range(0, K + 1):
            t0 = time.time()
            layer_size = patch_size * (2 ** layer)

            img = nn.functional.interpolate(original_img, (layer_size, layer_size))
            result = nn.functional.interpolate(final_result, (layer_size, layer_size))
            img_patch = nn.functional.unfold(img, [patch_size, patch_size], 
                                            strides=[patch_size, patch_size])
            result_patch = nn.functional.unfold(result, [patch_size, patch_size], 
                                            strides=[patch_size, patch_size])
            h = (img.shape[2] - patch_size) // patch_size + 1
            w = (img.shape[3] - patch_size) // patch_size + 1
            render_size_y = int(1.25 * H // h)
            render_size_x = int(1.25 * W // w)

            #* -------------------------------------------------------------*#
            #* -------------generate strokes on window type A---------------*#
            #* -------------------------------------------------------------*#
            param, decision = stroke_net_predict(img_patch, result_patch, patch_size, net_g, stroke_num)
            expand_img = original_img
            wA_xid_list, wA_yid_list, wA_fore_list, wA_alpha_list, wA_error_list, wA_params = \
                get_single_layer_lists(param, decision, original_img, render_size_x, render_size_y, h, w, 
                                        meta_brushes, dilation, erosion, stroke_num)

            #* -------------------------------------------------------------*#
            #* -------------generate strokes on window type B---------------*#
            #* -------------------------------------------------------------*#
            #*----- generate input canvas and target patches -----*#
            wB_error_list = []

            img = nn.functional.pad(img, [patch_size // 2, patch_size // 2, 
                                    patch_size // 2, patch_size // 2])
            result = nn.functional.pad(result, [patch_size // 2, patch_size // 2, 
                                        patch_size // 2, patch_size // 2])
            img_patch = nn.functional.unfold(img, [patch_size, patch_size], 
                                            strides=[patch_size, patch_size])
            result_patch = nn.functional.unfold(result, [patch_size, patch_size], 
                                                strides=[patch_size, patch_size])
            h += 1
            w += 1

            param, decision = stroke_net_predict(img_patch, result_patch, patch_size, net_g, stroke_num)

            patch_y = 4 * render_size_y // 5
            patch_x = 4 * render_size_x // 5
            expand_img = nn.functional.pad(original_img, [patch_x // 2, patch_x // 2,
                                            patch_y // 2, patch_y // 2])
            wB_xid_list, wB_yid_list, wB_fore_list, wB_alpha_list, wB_error_list, wB_params = \
                get_single_layer_lists(param, decision, expand_img, render_size_x, render_size_y, h, w, 
                                        meta_brushes, dilation, erosion, stroke_num)
            #* -------------------------------------------------------------*#
            #* -------------rank strokes and plot stroke one by one---------*#
            #* -------------------------------------------------------------*#
            numA = len(wA_error_list)
            numB = len(wB_error_list)
            total_error_list = wA_error_list + wB_error_list
            sort_list = list(np.argsort(total_error_list))
            
            sample = 0
            samples = np.linspace(0, len(sort_list) - 2, frames_per_layer[layer]).astype(int)
            for ii in sort_list:
                ii = int(ii)
                if ii < numA:
                    x_id = wA_xid_list[ii]
                    y_id = wA_yid_list[ii]
                    valid_foregrounds = wA_fore_list[ii]
                    valid_alphas = wA_alpha_list[ii]
                    sparam = wA_params[ii]
                    tmp_foreground, tmp_alpha = get_single_stroke_on_full_image_A(x_id, y_id, 
                    valid_foregrounds, valid_alphas, sparam, original_img, render_size_x, render_size_y, patch_x, patch_y)
                else:
                    x_id = wB_xid_list[ii - numA]
                    y_id = wB_yid_list[ii - numA]
                    valid_foregrounds = wB_fore_list[ii - numA]
                    valid_alphas = wB_alpha_list[ii - numA]
                    sparam = wB_params[ii - numA]
                    tmp_foreground, tmp_alpha = get_single_stroke_on_full_image_B(x_id, y_id, 
                    valid_foregrounds, valid_alphas, sparam, original_img, render_size_x, render_size_y, patch_x, patch_y)

                final_result = tmp_foreground * tmp_alpha + (1 - tmp_alpha) * final_result
                if sample in samples:
                    saveframe = (final_result.numpy().squeeze().transpose([1,2,0])[:,:,::-1] * 255).astype(np.uint8)
                    final_frame_list.append(saveframe)
                    #saveframe = cv2.resize(saveframe, (ow, oh))

                sample += 1
            print("layer %d cost: %.02f" %(layer, time.time() - t0))
            
        
        saveframe = (final_result.numpy().squeeze().transpose([1,2,0])[:,:,::-1] * 255).astype(np.uint8)
        final_frame_list.append(saveframe)
    return final_frame_list