jkorstad's picture
Update app.py
62ac8f9 verified
raw
history blame
2.07 kB
import gradio as gr
import spaces
import os
import torch
from transformers import AutoProcessor, MllamaForConditionalGeneration
from PIL import Image
# Hugging Face token
hf_token = os.getenv("HUGGING_FACE_HUB_TOKEN")
if not hf_token:
raise ValueError("HUGGING_FACE_HUB_TOKEN not found.")
# Model
model_name = "meta-llama/Llama-3.2-11B-Vision-Instruct"
model = MllamaForConditionalGeneration.from_pretrained(
model_name,
token=hf_token,
torch_dtype=torch.bfloat16,
device_map="auto",
)
processor = AutoProcessor.from_pretrained(model_name, use_auth_token=hf_token)
@spaces.GPU
def predict(image, text):
messages = [
{"role": "user", "content": [
{"type": "image"},
{"type": "text", "text": text}
]}
]
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(image, input_text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=250)
response = processor.decode(outputs[0], skip_special_tokens=True)
# Split the response at the first occurrence of "assistant" and return only the part after it
response = response.split("assistant", 1)[1].strip()
return f"\n{response}"
# Example photos and prompts
examples = [
{"image": "Cowboy Hat.jpg", "text": "Describe the photo"},
{"image": "Kynda Coffee.jpg", "text": "Search for the business name on his t-shirt to get a description of where the person is."},
{"image": "Norway.jpg", "text": "Where is this person?"}
]
# Load example images
example_images = [Image.open(example["image"]) for example in examples]
# Gradio
interface = gr.Interface(
fn=predict,
inputs=[
gr.Image(type="pil", label="Image Input"),
gr.Textbox(label="Text Input")
],
outputs=gr.Textbox(label="Output"),
title="Llama 3.2 11B Vision Instruct Chat",
description="Image + text chat.",
examples=[{"image": image, "text": example["text"]} for image, example in zip(example_images, examples)]
)
interface.launch()