Spaces:
Paused
Paused
File size: 4,591 Bytes
aeba71c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
import numpy as np
import os
try:
ROOT_DIR = os.environ['ROOT_DIR']
except:
ROOT_DIR = '/home/jiangnan/SyntheticHSI/'
DATA_DIR = os.path.join(ROOT_DIR, 'Data_augment', 'Data_blocks_motion_all')
CKPT_DIR = os.path.join(ROOT_DIR, 'HSIScripts', 'motion_gen_diffusion', 'checkpoints')
SMPL_DIR = os.path.join(ROOT_DIR, 'smpl_models')
OBJ_ACT_DICT = {
'lie down': 0,
'squat': 1,
'mouse': 2,
'keyboard': 3,
'laptop': 4,
'phone': 5,
'book': 6,
'bottle': 7,
'pen': 8,
'vase': 9,
}
CC_BONE_NAMES = ['CC_Base_Hip', 'CC_Base_Pelvis',
'CC_Base_Waist', 'CC_Base_Spine01', 'CC_Base_Spine02',
'CC_Base_NeckTwist01', 'CC_Base_NeckTwist02', 'CC_Base_Head',
'CC_Base_R_Clavicle', 'CC_Base_R_Upperarm', 'CC_Base_R_Forearm', 'CC_Base_R_Hand',
'CC_Base_R_Mid1', 'CC_Base_R_Mid2', 'CC_Base_R_Mid3', 'CC_Base_R_Ring1',
'CC_Base_R_Ring2', 'CC_Base_R_Ring3', 'CC_Base_R_Pinky1', 'CC_Base_R_Pinky2',
'CC_Base_R_Pinky3', 'CC_Base_R_Index1', 'CC_Base_R_Index2', 'CC_Base_R_Index3',
'CC_Base_R_Thumb1', 'CC_Base_R_Thumb2', 'CC_Base_R_Thumb3',
'CC_Base_L_Clavicle', 'CC_Base_L_Upperarm', 'CC_Base_L_Forearm', 'CC_Base_L_Hand',
'CC_Base_L_Mid1', 'CC_Base_L_Mid2', 'CC_Base_L_Mid3',
'CC_Base_L_Ring1', 'CC_Base_L_Ring2', 'CC_Base_L_Ring3',
'CC_Base_L_Pinky1', 'CC_Base_L_Pinky2', 'CC_Base_L_Pinky3',
'CC_Base_L_Index1', 'CC_Base_L_Index2', 'CC_Base_L_Index3', 'CC_Base_L_Thumb1',
'CC_Base_L_Thumb2', 'CC_Base_L_Thumb3', 'CC_Base_R_Thigh',
'CC_Base_R_Calf', 'CC_Base_R_Foot',
'CC_Base_L_Thigh',
'CC_Base_L_Calf', 'CC_Base_L_Foot',
'CC_Base_R_ToeBase',
'CC_Base_L_ToeBase',
]
SMPLX_JOINT_NAMES = [
'pelvis','left_hip','right_hip','spine1','left_knee','right_knee','spine2','left_ankle','right_ankle','spine3', 'left_foot','right_foot','neck','left_collar','right_collar','head','left_shoulder','right_shoulder','left_elbow', 'right_elbow','left_wrist','right_wrist',
'jaw','left_eye_smplhf','right_eye_smplhf','left_index1','left_index2','left_index3','left_middle1','left_middle2','left_middle3','left_pinky1','left_pinky2','left_pinky3','left_ring1','left_ring2','left_ring3','left_thumb1','left_thumb2','left_thumb3','right_index1','right_index2','right_index3','right_middle1','right_middle2','right_middle3','right_pinky1','right_pinky2','right_pinky3','right_ring1','right_ring2','right_ring3','right_thumb1','right_thumb2','right_thumb3'
]
# SMPL_MODEL_FOLDER = '/home/jiangnan/AHOI_cvpr/smpl_models'
SMPL_MODEL_FOLDER = '/home/jiangnan/SyntheticHSI/smpl_models'
rest_pelvis = np.matrix([[0.0000e+00, 0.0000e+00, 0.0000e+00],
[5.6144e-02, -9.4542e-02, -2.3475e-02],
[-5.7870e-02, -1.0517e-01, -1.6559e-02]])
pelvis_shift = [0.001144, -0.366919, 0.012666]
relaxed_hand_pose = np.array([0.11168, 0.04289, -0.41644,
0.10881, -0.06599, -0.75622,
-0.09639, -0.09092, -0.18846,
-0.1181, 0.05094, -0.52958,
-0.1437, 0.05524, -0.70486,
-0.01918, -0.09234, -0.33791,
-0.45703, -0.19628, -0.62546,
-0.21465, -0.066, -0.50689,
-0.36972, -0.06034, -0.07949,
-0.14187, -0.08585, -0.63553,
-0.30334, -0.05788, -0.63139,
-0.17612, -0.13209, -0.37335,
0.85096, 0.27692, -0.09155,
-0.49984, 0.02656, 0.05288,
0.53556, 0.04596, -0.27736,
0.11168, -0.04289, 0.41644,
0.10881, 0.06599, 0.75622,
-0.09639, 0.09092, 0.18846,
-0.1181, -0.05094, 0.52958,
-0.1437, -0.05524, 0.70486,
-0.01918, 0.09234, 0.33791,
-0.45703, 0.19628, 0.62546,
-0.21465, 0.066, 0.50689,
-0.36972, 0.06034, 0.07949,
-0.14187, 0.08585, 0.63553,
-0.30334, 0.05788, 0.63139,
-0.17612, 0.13209, 0.37335,
0.85096, -0.27692, 0.09155,
-0.49984, -0.02656, -0.05288,
0.53556, -0.04596, 0.27736]).astype(np.float32) |