init commit
Browse files- app.py +282 -0
- requirements.txt +1 -0
app.py
ADDED
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib
|
2 |
+
matplotlib.use('Agg')
|
3 |
+
|
4 |
+
import functools
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import seaborn as sns
|
9 |
+
import pandas as pd
|
10 |
+
|
11 |
+
|
12 |
+
# benchmark order: pytorch, tf eager, tf xla; units = ms
|
13 |
+
BENCHMARK_DATA = {
|
14 |
+
"Greedy Decoding": {
|
15 |
+
"DistilGPT2": {
|
16 |
+
"T4": [336.22, 3976.23, 115.84],
|
17 |
+
"3090": [158.38, 1835.82, 46.56],
|
18 |
+
"A100": [371.49, 4073.84, 60.94],
|
19 |
+
},
|
20 |
+
"GPT2": {
|
21 |
+
"T4": [607.31, 7140.23, 185.12],
|
22 |
+
"3090": [297.03, 3308.31, 76.68],
|
23 |
+
"A100": [691.75, 7323.60, 110.72],
|
24 |
+
},
|
25 |
+
"OPT-1.3B": {
|
26 |
+
"T4": [1303.41, 15939.07, 1488.15],
|
27 |
+
"3090": [428.33, 7259.43, 468.37],
|
28 |
+
"A100": [1125.00, 16713.63, 384.52],
|
29 |
+
},
|
30 |
+
"GPTJ-6B": {
|
31 |
+
"T4": [0, 0, 0],
|
32 |
+
"3090": [0, 0, 0],
|
33 |
+
"A100": [2664.28, 32783.09, 1440.06],
|
34 |
+
},
|
35 |
+
"T5 Small": {
|
36 |
+
"T4": [99.88, 1527.73, 18.78],
|
37 |
+
"3090": [55.09, 665.70, 9.25],
|
38 |
+
"A100": [124.91, 1642.07, 13.72],
|
39 |
+
},
|
40 |
+
"T5 Base": {
|
41 |
+
"T4": [416.56, 6095.05, 106.12],
|
42 |
+
"3090": [223.00, 2503.28, 46.67],
|
43 |
+
"A100": [550.76, 6504.11, 64.57],
|
44 |
+
},
|
45 |
+
"T5 Large": {
|
46 |
+
"T4": [645.05, 9587.67, 225.17],
|
47 |
+
"3090": [377.74, 4216.41, 97.92],
|
48 |
+
"A100": [944.17, 10572.43, 116.52],
|
49 |
+
},
|
50 |
+
"T5 3B": {
|
51 |
+
"T4": [1493.61, 13629.80, 1494.80],
|
52 |
+
"3090": [694.75, 6316.79, 489.33],
|
53 |
+
"A100": [1801.68, 16707.71, 411.93],
|
54 |
+
},
|
55 |
+
},
|
56 |
+
"Sampling": {
|
57 |
+
"DistilGPT2": {
|
58 |
+
"T4": [617.40, 6078.81, 221.65],
|
59 |
+
"3090": [310.37, 2843.73, 85.44],
|
60 |
+
"A100": [729.05, 7140.05, 121.83],
|
61 |
+
},
|
62 |
+
"GPT2": {
|
63 |
+
"T4": [1205.34, 12256.98, 378.69],
|
64 |
+
"3090": [577.12, 5637.11, 160.02],
|
65 |
+
"A100": [1377.68, 15605.72, 234.47],
|
66 |
+
},
|
67 |
+
"OPT-1.3B": {
|
68 |
+
"T4": [2166.72, 19126.25, 2341.32],
|
69 |
+
"3090": [706.50, 9616.97, 731.58],
|
70 |
+
"A100": [2019.70, 28621.09, 690.36],
|
71 |
+
},
|
72 |
+
"GPTJ-6B": {
|
73 |
+
"T4": [0, 0, 0],
|
74 |
+
"3090": [0, 0, 0],
|
75 |
+
"A100": [5150.35, 70554.07, 2744.49],
|
76 |
+
},
|
77 |
+
"T5 Small": {
|
78 |
+
"T4": [235.93, 3599.47, 41.07],
|
79 |
+
"3090": [100.41, 1093.33, 23.24],
|
80 |
+
"A100": [267.42, 3366.73, 28.53],
|
81 |
+
},
|
82 |
+
"T5 Base": {
|
83 |
+
"T4": [812.59, 7966.73, 196.85],
|
84 |
+
"3090": [407.81, 4904.54, 97.56],
|
85 |
+
"A100": [1033.05, 11521.97, 123.93],
|
86 |
+
},
|
87 |
+
"T5 Large": {
|
88 |
+
"T4": [1114.22, 16433.31, 424.91],
|
89 |
+
"3090": [647.61, 7184.71, 160.97],
|
90 |
+
"A100": [1668.73, 19962.78, 200.75],
|
91 |
+
},
|
92 |
+
"T5 3B": {
|
93 |
+
"T4": [2282.56, 20891.22, 2196.02],
|
94 |
+
"3090": [1011.32, 9735.97, 734.40],
|
95 |
+
"A100": [2769.64, 26440.65, 612.98],
|
96 |
+
},
|
97 |
+
},
|
98 |
+
"Beam Search": {
|
99 |
+
"DistilGPT2": {
|
100 |
+
"T4": [2407.89, 19442.60, 3313.92],
|
101 |
+
"3090": [998.52, 8286.03, 900.28],
|
102 |
+
"A100": [2237.41, 21771.40, 760.47],
|
103 |
+
},
|
104 |
+
"GPT2": {
|
105 |
+
"T4": [3767.43, 34813.93, 5559.42],
|
106 |
+
"3090": [1633.04, 14606.93, 1533.55],
|
107 |
+
"A100": [3705.43, 34586.23, 1295.87],
|
108 |
+
},
|
109 |
+
"OPT-1.3B": {
|
110 |
+
"T4": [16649.82, 78500.33, 21894.31],
|
111 |
+
"3090": [508518, 32822.81, 5762.46],
|
112 |
+
"A100": [5967.32, 78334.56, 4096.38],
|
113 |
+
},
|
114 |
+
"GPTJ-6B": {
|
115 |
+
"T4": [0, 0, 0],
|
116 |
+
"3090": [0, 0, 0],
|
117 |
+
"A100": [15119.10, 134000.40, 10214.17],
|
118 |
+
},
|
119 |
+
"T5 Small": {
|
120 |
+
"T4": [283.64, 25089.12, 1391.66],
|
121 |
+
"3090": [137.38, 10680.28, 486.96],
|
122 |
+
"A100": [329.28, 24747.38, 513.99],
|
123 |
+
},
|
124 |
+
"T5 Base": {
|
125 |
+
"T4": [1383.21, 44809.14, 3920.40],
|
126 |
+
"3090": [723.11, 18657.48, 1258.60],
|
127 |
+
"A100": [2360.85, 45085.07, 1107.58],
|
128 |
+
},
|
129 |
+
"T5 Large": {
|
130 |
+
"T4": [1663.50, 81902.41, 9551.29],
|
131 |
+
"3090": [922.53, 35524.30, 2838.86],
|
132 |
+
"A100": [2168.22, 86890.00, 2373.04],
|
133 |
+
},
|
134 |
+
"T5 3B": {
|
135 |
+
"T4": [0, 0, 0],
|
136 |
+
"3090": [1521.05, 35337.30, 8282.09],
|
137 |
+
"A100": [3162.54, 88453.65, 5585.20],
|
138 |
+
},
|
139 |
+
},
|
140 |
+
}
|
141 |
+
FIGURE_PATH = "plt.png"
|
142 |
+
FIG_DPI = 300
|
143 |
+
|
144 |
+
|
145 |
+
def get_plot(model_name, plot_eager, generate_type):
|
146 |
+
df = pd.DataFrame(BENCHMARK_DATA[generate_type][model_name])
|
147 |
+
df["framework"] = ["PyTorch", "TF (Eager Execution)", "TF (XLA)"]
|
148 |
+
df = pd.melt(df, id_vars=["framework"], value_vars=["T4", "3090", "A100"])
|
149 |
+
if plot_eager == "No":
|
150 |
+
df = df[df["framework"] != "TF (Eager Execution)"]
|
151 |
+
|
152 |
+
g = sns.catplot(
|
153 |
+
data=df,
|
154 |
+
kind="bar",
|
155 |
+
x="variable",
|
156 |
+
y="value",
|
157 |
+
hue="framework",
|
158 |
+
palette={"PyTorch": "blue", "TF (Eager Execution)": "orange", "TF (XLA)": "red"},
|
159 |
+
alpha=.9,
|
160 |
+
)
|
161 |
+
g.despine(left=True)
|
162 |
+
g.set_axis_labels("GPU", "Generation time (ms)")
|
163 |
+
g.legend.set_title("Framework")
|
164 |
+
|
165 |
+
# Add the number to the top of each bar
|
166 |
+
ax = g.facet_axis(0, 0)
|
167 |
+
for i in ax.containers:
|
168 |
+
ax.bar_label(i,)
|
169 |
+
|
170 |
+
plt.savefig(FIGURE_PATH, dpi=FIG_DPI)
|
171 |
+
return FIGURE_PATH
|
172 |
+
|
173 |
+
demo = gr.Blocks()
|
174 |
+
|
175 |
+
with demo:
|
176 |
+
gr.Markdown(
|
177 |
+
"""
|
178 |
+
# TensorFlow XLA Text Generation Benchmark
|
179 |
+
Instructions:
|
180 |
+
1. Pick a tab for the type of generation (or for benchmark information);
|
181 |
+
2. Select a model from the dropdown menu;
|
182 |
+
3. Optionally omit results from TensorFlow Eager Execution, if you wish to better compare the performance of
|
183 |
+
PyTorch to TensorFlow with XLA.
|
184 |
+
"""
|
185 |
+
)
|
186 |
+
with gr.Tabs():
|
187 |
+
with gr.TabItem("Greedy Decoding"):
|
188 |
+
plot_fn = functools.partial(get_plot, generate_type="Greedy Decoding")
|
189 |
+
with gr.Row():
|
190 |
+
with gr.Column():
|
191 |
+
model_selector = gr.Dropdown(
|
192 |
+
choices=["DistilGPT2", "GPT2", "OPT-1.3B", "GPTJ-6B", "T5 Small", "T5 Base", "T5 Large", "T5 3B"],
|
193 |
+
value="T5 Small",
|
194 |
+
label="Model",
|
195 |
+
interactive=True,
|
196 |
+
)
|
197 |
+
eager_enabler = gr.Radio(
|
198 |
+
["Yes", "No"],
|
199 |
+
value="Yes",
|
200 |
+
label="Plot TF Eager Execution?",
|
201 |
+
interactive=True
|
202 |
+
)
|
203 |
+
gr.Markdown(
|
204 |
+
"""
|
205 |
+
### Greedy Decoding benchmark parameters
|
206 |
+
- `max_new_tokens = 64`;
|
207 |
+
- `pad_to_multiple_of = 64` for Tensorflow XLA models. Others do not pad (input prompts between 2 and 33 tokens).
|
208 |
+
"""
|
209 |
+
)
|
210 |
+
plot = gr.Image(value=plot_fn("T5 Small", "Yes")) # Show plot when the gradio app is initialized
|
211 |
+
model_selector.change(fn=plot_fn, inputs=[model_selector, eager_enabler], outputs=plot)
|
212 |
+
eager_enabler.change(fn=plot_fn, inputs=[model_selector, eager_enabler], outputs=plot)
|
213 |
+
with gr.TabItem("Sampling"):
|
214 |
+
plot_fn = functools.partial(get_plot, generate_type="Sampling")
|
215 |
+
with gr.Row():
|
216 |
+
with gr.Column():
|
217 |
+
model_selector = gr.Dropdown(
|
218 |
+
choices=["DistilGPT2", "GPT2", "OPT-1.3B", "GPTJ-6B", "T5 Small", "T5 Base", "T5 Large", "T5 3B"],
|
219 |
+
value="T5 Small",
|
220 |
+
label="Model",
|
221 |
+
interactive=True,
|
222 |
+
)
|
223 |
+
eager_enabler = gr.Radio(
|
224 |
+
["Yes", "No"],
|
225 |
+
value="Yes",
|
226 |
+
label="Plot TF Eager Execution?",
|
227 |
+
interactive=True
|
228 |
+
)
|
229 |
+
gr.Markdown(
|
230 |
+
"""
|
231 |
+
### Sampling benchmark parameters
|
232 |
+
- `max_new_tokens = 128`;
|
233 |
+
- `temperature = 2.0`;
|
234 |
+
- `top_k = 50`;
|
235 |
+
- `pad_to_multiple_of = 64` for Tensorflow XLA models. Others do not pad (input prompts between 2 and 33 tokens).
|
236 |
+
"""
|
237 |
+
)
|
238 |
+
plot = gr.Image(value=plot_fn("T5 Small", "Yes")) # Show plot when the gradio app is initialized
|
239 |
+
model_selector.change(fn=plot_fn, inputs=[model_selector, eager_enabler], outputs=plot)
|
240 |
+
eager_enabler.change(fn=plot_fn, inputs=[model_selector, eager_enabler], outputs=plot)
|
241 |
+
with gr.TabItem("Beam Search"):
|
242 |
+
plot_fn = functools.partial(get_plot, generate_type="Beam Search")
|
243 |
+
with gr.Row():
|
244 |
+
with gr.Column():
|
245 |
+
model_selector = gr.Dropdown(
|
246 |
+
choices=["DistilGPT2", "GPT2", "OPT-1.3B", "GPTJ-6B", "T5 Small", "T5 Base", "T5 Large", "T5 3B"],
|
247 |
+
value="T5 Small",
|
248 |
+
label="Model",
|
249 |
+
interactive=True,
|
250 |
+
)
|
251 |
+
eager_enabler = gr.Radio(
|
252 |
+
["Yes", "No"],
|
253 |
+
value="Yes",
|
254 |
+
label="Plot TF Eager Execution?",
|
255 |
+
interactive=True
|
256 |
+
)
|
257 |
+
gr.Markdown(
|
258 |
+
"""
|
259 |
+
### Beam Search benchmark parameters
|
260 |
+
- `max_new_tokens = 256`;
|
261 |
+
- `num_beams = 16`;
|
262 |
+
- `pad_to_multiple_of = 64` for Tensorflow XLA models. Others do not pad (input prompts between 2 and 33 tokens).
|
263 |
+
"""
|
264 |
+
)
|
265 |
+
plot = gr.Image(value=plot_fn("T5 Small", "Yes")) # Show plot when the gradio app is initialized
|
266 |
+
model_selector.change(fn=plot_fn, inputs=[model_selector, eager_enabler], outputs=plot)
|
267 |
+
eager_enabler.change(fn=plot_fn, inputs=[model_selector, eager_enabler], outputs=plot)
|
268 |
+
with gr.TabItem("Benchmark Information"):
|
269 |
+
gr.Dataframe(
|
270 |
+
headers=["Parameter", "Value"],
|
271 |
+
value=[
|
272 |
+
["Transformers Version", "4.21"],
|
273 |
+
["TensorFlow Version", "2.9.1"],
|
274 |
+
["Pytorch Version", "1.11.0"],
|
275 |
+
["OS", "22.04 LTS (3090) / Debian 10 (other GPUs)"],
|
276 |
+
["CUDA", "11.6 (3090) / 11.3 (others GPUs)"],
|
277 |
+
["Number of Runs", "100 (the first run was discarded to ignore compilation time)"],
|
278 |
+
["Is there code to reproduce?", "Yes -- https://gist.github.com/gante/f0017e3f13ac11b0c02e4e4db351f52f"],
|
279 |
+
],
|
280 |
+
)
|
281 |
+
|
282 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
seaborn
|