File size: 4,355 Bytes
bd89ed8
 
 
0b94c41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd89ed8
0b94c41
 
 
bd89ed8
0b94c41
 
 
bd89ed8
 
 
 
0b94c41
 
 
3b0ae8d
0b94c41
 
 
 
 
 
 
bd89ed8
 
0b94c41
 
bd89ed8
0b94c41
bd89ed8
0b94c41
 
 
 
 
 
 
 
 
 
 
bd89ed8
0b94c41
 
 
bd89ed8
0b94c41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd89ed8
0b94c41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd89ed8
0b94c41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
"""
Holds the interface between the gradio app and the medusa training script
"""
import os
import multiprocessing as mp

from huggingface_hub import HfApi
from huggingface_hub.utils import RepositoryNotFoundError
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
import torch
import torch.distributed.run as distributed_run

OUTPUT_DIR = "medusa_heads"

DATASET = "vicuna"

# These can't be changed (e.g. they control the output path)
FIXED_TRAINING_ARGS = \
"""src/medusa_training_script.py
--model_name_or_path {model_id}
--output_dir {output_dir}
--run_name {model_id}-medusa-{dataset}
--dataset {dataset}"""

# These can be freely changed
DEFAULT_TRAINING_ARGS = \
"""--medusa_num_heads 3
--medusa_num_layers 1
--model_max_length 2048
--bf16 True
--num_train_epochs 1
--per_device_train_batch_size 64
--per_device_eval_batch_size 64
--gradient_accumulation_steps 8
--evaluation_strategy no
--save_strategy no
--weight_decay 0.0
--warmup_ratio 0.1
--lr_scheduler_type cosine
--logging_steps 10
--tf32 True
--auto_find_batch_size True
--learning_rate 1e-3"""


def train_medusa_heads(model_id: str, training_args: str, dataset: str):
    all_training_args = FIXED_TRAINING_ARGS.format(
        model_id=model_id, output_dir=OUTPUT_DIR, dataset=dataset,
    ) + "\n" + training_args
    all_training_arg_list = []
    for arg in all_training_args.split("\n"):
        all_training_arg_list += arg.split(" ")
    print("Full argument list:", all_training_arg_list)

    parser = distributed_run.get_args_parser()
    args = parser.parse_args(all_training_arg_list)
    distributed_run.run(args)


def run(model_id: str, training_args: str, dataset: str) -> str:
    print(f"\n\n\nNEW RUN: {model_id}")
    api = HfApi()
    model_name = model_id.split("/")[-1]
    repo_id = f"joaogante/{model_name}-medusa-{dataset}"

    # Input validation
    if model_id == "":
        return """
        ### Invalid input 🐞

        Please fill a model_id.
        """
    if api.repo_exists(repo_id):
        return f"""
        ### Invalid input 🐞

        {repo_id} already exists, which means that {model_id} has already been used to create medusa heads.
        """
    print(f"Valid inputs βœ…\nValidating model_id: {model_id}")

    # Attempt to load the base model
    try:
        config = AutoConfig.from_pretrained(model_id)
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16)
        del config, tokenizer, model
    except Exception as e:
        return f"""
        ### {model_id} can't be loaded with AutoClasses 🐞

        {e}
        """
    print(f"{model_id} can be loaded βœ…\nCreating medusa heads (will take a few hours)")

    # Run the medusa heads creation
    try:
        proc = mp.Process(target=train_medusa_heads, args=(model_id, training_args, dataset))
        proc.start()
        proc.join()
        print("Medusa heads training process completed (it might have crashed!)")
    except Exception as e:
        print("Error ❌\n", e)
        return f"""
        ### Error 😒😒😒

        {e}
        """

    # Upload the medusa heads to the Hub
    try:
        # Folder path from https://github.com/FasterDecoding/Medusa/blob/main/medusa/train/train.py#L399
        folder_path = (
            f"{OUTPUT_DIR}_medusa_{model_name}"
        )
        if not any([x for x in os.listdir(folder_path) if len(x) >= 3 and x[-3:] == ".pt"]):
            raise Exception(
                "No model data in the expected model folder, the traning run probably failed. Check the logs for more "
                "information."
            )

        api.create_repo(
            repo_id=repo_id,
            exist_ok=True,
        )
        api.upload_folder(
            folder_path=folder_path,
            repo_id=repo_id,
        )
        print("Medusa heads upload success βœ…\n Uploaded to: ", repo_id)
        return f"""
        ### Success πŸ”₯

        Yay! Medusa heads were successfully created and uploaded to the following repo: {repo_id}
        """
    except Exception as e:
        print("Error ❌\n", e)
        try:
            api.delete_repo(repo_id)
        except RepositoryNotFoundError:
            pass
        return f"""
        ### Error 😒😒😒

        {e}
        """