Spaces:
Sleeping
Sleeping
johannoriel
commited on
Commit
•
645a356
1
Parent(s):
d7dc2a6
HF compat
Browse files- plugins/ragllm.py +76 -19
- requirements.txt +1 -1
plugins/ragllm.py
CHANGED
@@ -10,10 +10,18 @@ from typing import List, Dict, Any
|
|
10 |
import requests
|
11 |
import torch
|
12 |
from transformers import AutoTokenizer, AutoModel
|
|
|
|
|
13 |
|
14 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
15 |
MAX_LENGTH = 512
|
16 |
-
CHUNK_SIZE = 200
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
def mean_pooling(model_output, attention_mask):
|
19 |
token_embeddings = model_output[0]
|
@@ -43,6 +51,7 @@ translations["en"].update({
|
|
43 |
"rag_error_fetching_models_ollama": "Error fetching Ollama models: ",
|
44 |
"rag_error_calling_llm": "Error calling LLM: ",
|
45 |
"rag_processing" : "Processing...",
|
|
|
46 |
})
|
47 |
|
48 |
translations["fr"].update({
|
@@ -67,28 +76,36 @@ translations["fr"].update({
|
|
67 |
"rag_error_fetching_models_ollama": "Erreur lors de la récupération des modèles Ollama : ",
|
68 |
"rag_error_calling_llm": "Erreur lors de l'appel au LLM : ",
|
69 |
"rag_processing" : "En cours de traitement...",
|
|
|
70 |
})
|
71 |
|
72 |
class RagllmPlugin(Plugin):
|
73 |
def __init__(self, name: str, plugin_manager):
|
74 |
super().__init__(name, plugin_manager)
|
75 |
-
|
|
|
|
|
|
|
76 |
self.embeddings = None
|
77 |
self.chunks = None
|
|
|
78 |
|
79 |
def load_llm_config(self) -> Dict:
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
82 |
|
83 |
def get_tabs(self):
|
84 |
return [{"name": "RAG", "plugin": "ragllm"}]
|
85 |
|
86 |
def get_config_fields(self):
|
87 |
-
|
88 |
"provider": {
|
89 |
"type": "select",
|
90 |
"label": t("rag_model_provider"),
|
91 |
-
"options": [("ollama", "Ollama"), ("groq", "Groq")],
|
92 |
"default": "ollama"
|
93 |
},
|
94 |
"llm_model": {
|
@@ -132,6 +149,15 @@ class RagllmPlugin(Plugin):
|
|
132 |
"default": 3
|
133 |
}
|
134 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
def get_config_ui(self, config):
|
137 |
updated_config = {}
|
@@ -201,6 +227,8 @@ class RagllmPlugin(Plugin):
|
|
201 |
return ["ollama/qwen2"]
|
202 |
elif provider == 'groq':
|
203 |
return ["groq/llama3-70b-8192", "groq/mixtral-8x7b-32768"]
|
|
|
|
|
204 |
else:
|
205 |
return ["none"]
|
206 |
|
@@ -211,12 +239,23 @@ class RagllmPlugin(Plugin):
|
|
211 |
self.embeddings = np.vstack([self.get_embedding(c, embedder) for c in self.chunks])
|
212 |
|
213 |
def get_embedding(self, text: str, model: str) -> np.ndarray:
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
def calculate_similarity(self, query_embedding: np.ndarray, method: str) -> np.ndarray:
|
222 |
if method == 'cosine':
|
@@ -238,13 +277,31 @@ class RagllmPlugin(Plugin):
|
|
238 |
def call_llm(self, prompt: str, sysprompt: str) -> str:
|
239 |
try:
|
240 |
llm_model = st.session_state.ragllm_llm_model
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
except Exception as e:
|
249 |
return f"{t('rag_error_calling_llm')}{str(e)}"
|
250 |
|
|
|
10 |
import requests
|
11 |
import torch
|
12 |
from transformers import AutoTokenizer, AutoModel
|
13 |
+
from huggingface_hub import InferenceClient
|
14 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
15 |
|
16 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
17 |
MAX_LENGTH = 512
|
18 |
+
CHUNK_SIZE = 200
|
19 |
+
|
20 |
+
def mean_pooling(model_output, attention_mask):
|
21 |
+
token_embeddings = model_output[0]
|
22 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
23 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
24 |
+
|
25 |
|
26 |
def mean_pooling(model_output, attention_mask):
|
27 |
token_embeddings = model_output[0]
|
|
|
51 |
"rag_error_fetching_models_ollama": "Error fetching Ollama models: ",
|
52 |
"rag_error_calling_llm": "Error calling LLM: ",
|
53 |
"rag_processing" : "Processing...",
|
54 |
+
"rag_hf_api_key": "HuggingFace API Token",
|
55 |
})
|
56 |
|
57 |
translations["fr"].update({
|
|
|
76 |
"rag_error_fetching_models_ollama": "Erreur lors de la récupération des modèles Ollama : ",
|
77 |
"rag_error_calling_llm": "Erreur lors de l'appel au LLM : ",
|
78 |
"rag_processing" : "En cours de traitement...",
|
79 |
+
"rag_hf_api_key": "Token API HuggingFace",
|
80 |
})
|
81 |
|
82 |
class RagllmPlugin(Plugin):
|
83 |
def __init__(self, name: str, plugin_manager):
|
84 |
super().__init__(name, plugin_manager)
|
85 |
+
try:
|
86 |
+
self.config = self.load_llm_config()
|
87 |
+
except:
|
88 |
+
self.config = {}
|
89 |
self.embeddings = None
|
90 |
self.chunks = None
|
91 |
+
self.hf_client = None
|
92 |
|
93 |
def load_llm_config(self) -> Dict:
|
94 |
+
try:
|
95 |
+
with open('.llm-config.yml', 'r') as file:
|
96 |
+
return yaml.safe_load(file)
|
97 |
+
except:
|
98 |
+
return {}
|
99 |
|
100 |
def get_tabs(self):
|
101 |
return [{"name": "RAG", "plugin": "ragllm"}]
|
102 |
|
103 |
def get_config_fields(self):
|
104 |
+
fields = {
|
105 |
"provider": {
|
106 |
"type": "select",
|
107 |
"label": t("rag_model_provider"),
|
108 |
+
"options": [("ollama", "Ollama"), ("groq", "Groq"), ("huggingface", "HuggingFace")],
|
109 |
"default": "ollama"
|
110 |
},
|
111 |
"llm_model": {
|
|
|
149 |
"default": 3
|
150 |
}
|
151 |
}
|
152 |
+
# Add HuggingFace API key field if provider is huggingface
|
153 |
+
if 'provider' in self.config and self.config.get('provider') == 'huggingface':
|
154 |
+
fields["hf_api_key"] = {
|
155 |
+
"type": "password",
|
156 |
+
"label": t("rag_hf_api_key"),
|
157 |
+
"default": ""
|
158 |
+
}
|
159 |
+
|
160 |
+
return fields
|
161 |
|
162 |
def get_config_ui(self, config):
|
163 |
updated_config = {}
|
|
|
227 |
return ["ollama/qwen2"]
|
228 |
elif provider == 'groq':
|
229 |
return ["groq/llama3-70b-8192", "groq/mixtral-8x7b-32768"]
|
230 |
+
elif provider == 'huggingface':
|
231 |
+
return ["HuggingFaceH4/zephyr-7b-beta"]
|
232 |
else:
|
233 |
return ["none"]
|
234 |
|
|
|
239 |
self.embeddings = np.vstack([self.get_embedding(c, embedder) for c in self.chunks])
|
240 |
|
241 |
def get_embedding(self, text: str, model: str) -> np.ndarray:
|
242 |
+
if self.config.get('provider') == 'huggingface':
|
243 |
+
if not hasattr(self, 'hf_embeddings'):
|
244 |
+
self.hf_embeddings = HuggingFaceEmbeddings(
|
245 |
+
model_name=model,
|
246 |
+
task="feature-extraction",
|
247 |
+
encode_kwargs={'normalize': True}
|
248 |
+
)
|
249 |
+
embedding = self.hf_embeddings.embed_query(text)
|
250 |
+
return np.array(embedding).reshape(1, -1)
|
251 |
+
else:
|
252 |
+
# Original embedding logic
|
253 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
254 |
+
model = AutoModel.from_pretrained(model, trust_remote_code=True).to(DEVICE)
|
255 |
+
inputs = tokenizer(text, padding=True, truncation=True, max_length=MAX_LENGTH, return_tensors="pt").to(DEVICE)
|
256 |
+
with torch.no_grad():
|
257 |
+
model_output = model(**inputs)
|
258 |
+
return mean_pooling(model_output, inputs['attention_mask']).cpu().numpy()
|
259 |
|
260 |
def calculate_similarity(self, query_embedding: np.ndarray, method: str) -> np.ndarray:
|
261 |
if method == 'cosine':
|
|
|
277 |
def call_llm(self, prompt: str, sysprompt: str) -> str:
|
278 |
try:
|
279 |
llm_model = st.session_state.ragllm_llm_model
|
280 |
+
if self.config.get('provider') == 'huggingface':
|
281 |
+
if not self.hf_client:
|
282 |
+
self.hf_client = InferenceClient(token=self.config.get('hf_api_key'))
|
283 |
+
|
284 |
+
messages = [
|
285 |
+
{"role": "system", "content": sysprompt},
|
286 |
+
{"role": "user", "content": prompt}
|
287 |
+
]
|
288 |
+
|
289 |
+
response = self.hf_client.text_generation(
|
290 |
+
model=llm_model,
|
291 |
+
prompt=prompt,
|
292 |
+
max_new_tokens=512,
|
293 |
+
temperature=0.7,
|
294 |
+
stream=False
|
295 |
+
)
|
296 |
+
return response
|
297 |
+
else:
|
298 |
+
messages = [
|
299 |
+
{"role": "system", "content": sysprompt},
|
300 |
+
{"role": "user", "content": prompt}
|
301 |
+
]
|
302 |
+
response = completion(model=llm_model, messages=messages)
|
303 |
+
return response['choices'][0]['message']['content']
|
304 |
+
|
305 |
except Exception as e:
|
306 |
return f"{t('rag_error_calling_llm')}{str(e)}"
|
307 |
|
requirements.txt
CHANGED
@@ -9,4 +9,4 @@ PyDictionary
|
|
9 |
matplotlib
|
10 |
litellm
|
11 |
sentencepiece
|
12 |
-
|
|
|
9 |
matplotlib
|
10 |
litellm
|
11 |
sentencepiece
|
12 |
+
langchain_huggingface
|