Johannes
init
733a1a0
raw
history blame
1.32 kB
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
import gradio as gr
from spacy import displacy
tokenizer = AutoTokenizer.from_pretrained("lirondos/anglicisms-spanish-mbert")
model = AutoModelForTokenClassification.from_pretrained(
"lirondos/anglicisms-spanish-mbert"
)
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
diplacy_dict_template = {
"text": "But Google is starting from behind.",
"ents": [{"start": 4, "end": 10, "label": "ORG"}],
"title": None,
}
def infer(input_text):
displacy_ents = []
borrowings = nlp(input_text)
for borrowing in borrowings:
displacy_ent_dict = {
"start": borrowing["start"],
"end": borrowing["end"],
"label": borrowing["entity"],
}
displacy_ents.append(displacy_ent_dict)
displacy_dict_template = {"text": input_text, "ents": displacy_ents, "title": None}
html = displacy.render(displacy_dict_template, style="ent", page=True, manual=True)
html = (
""
+ html
+ ""
)
return html
demo = gr.Interface(
title="Borrowing Detection Español",
fn=infer,
inputs=gr.Text(),
outputs=gr.HTML(),
examples=["Buscamos data scientist para proyecto de machine learning."],
)
demo.launch()