Johannes
update
2420b7f
from torch import nn
import torch.nn.functional as nnf
from transformers import GPT2Tokenizer, GPT2LMHeadModel
import torch
from typing import Tuple, List, Union, Optional
import numpy as np
N = type(None)
V = np.array
ARRAY = np.ndarray
ARRAYS = Union[Tuple[ARRAY, ...], List[ARRAY]]
VS = Union[Tuple[V, ...], List[V]]
VN = Union[V, N]
VNS = Union[VS, N]
T = torch.Tensor
TS = Union[Tuple[T, ...], List[T]]
TN = Optional[T]
TNS = Union[Tuple[TN, ...], List[TN]]
TSN = Optional[TS]
TA = Union[T, ARRAY]
class ClipCaptionModel(nn.Module):
def get_dummy_token(self, batch_size: int, device: torch.device) -> torch.Tensor:
return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device)
def forward(self, tokens: torch.Tensor, prefix: torch.Tensor, mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None):
embedding_text = self.gpt.transformer.wte(tokens)
prefix_projections = self.clip_project(prefix).view(-1, self.prefix_length, self.gpt_embedding_size)
embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1)
if labels is not None:
dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device)
labels = torch.cat((dummy_token, tokens), dim=1)
out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask)
return out
def __init__(self):
super(ClipCaptionModel, self).__init__()
self.prefix_length = 40
self.gpt = GPT2LMHeadModel.from_pretrained('gpt2')
self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1]
self.clip_project = TransformerMapper(640, self.gpt_embedding_size, 40,
40, 8)
class MLP(nn.Module):
def forward(self, x: T) -> T:
return self.model(x)
def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh):
super(MLP, self).__init__()
layers = []
for i in range(len(sizes) -1):
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias))
if i < len(sizes) - 2:
layers.append(act())
self.model = nn.Sequential(*layers)
class ClipCaptionPrefix(ClipCaptionModel):
def parameters(self, recurse: bool = True):
return self.clip_project.parameters()
def train(self, mode: bool = True):
super(ClipCaptionPrefix, self).train(mode)
self.gpt.eval()
return self
class MlpTransformer(nn.Module):
def __init__(self, in_dim, h_dim, out_d: Optional[int] = None, act=nnf.relu, dropout=0.):
super().__init__()
out_d = out_d if out_d is not None else in_dim
self.fc1 = nn.Linear(in_dim, h_dim)
self.act = act
self.fc2 = nn.Linear(h_dim, out_d)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.dropout(x)
x = self.fc2(x)
x = self.dropout(x)
return x
class MultiHeadAttention(nn.Module):
def __init__(self, dim_self, dim_ref, num_heads, bias=True, dropout=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim_self // num_heads
self.scale = head_dim ** -0.5
self.to_queries = nn.Linear(dim_self, dim_self, bias=bias)
self.to_keys_values = nn.Linear(dim_ref, dim_self * 2, bias=bias)
self.project = nn.Linear(dim_self, dim_self)
self.dropout = nn.Dropout(dropout)
def forward(self, x, y=None, mask=None):
y = y if y is not None else x
b, n, c = x.shape
_, m, d = y.shape
# b n h dh
queries = self.to_queries(x).reshape(b, n, self.num_heads, c // self.num_heads)
# b m 2 h dh
keys_values = self.to_keys_values(y).reshape(b, m, 2, self.num_heads, c // self.num_heads)
keys, values = keys_values[:, :, 0], keys_values[:, :, 1]
attention = torch.einsum('bnhd,bmhd->bnmh', queries, keys) * self.scale
if mask is not None:
if mask.dim() == 2:
mask = mask.unsqueeze(1)
attention = attention.masked_fill(mask.unsqueeze(3), float("-inf"))
attention = attention.softmax(dim=2)
out = torch.einsum('bnmh,bmhd->bnhd', attention, values).reshape(b, n, c)
out = self.project(out)
return out, attention
class TransformerLayer(nn.Module):
def forward_with_attention(self, x, y=None, mask=None):
x_, attention = self.attn(self.norm1(x), y, mask)
x = x + x_
x = x + self.mlp(self.norm2(x))
return x, attention
def forward(self, x, y=None, mask=None):
x = x + self.attn(self.norm1(x), y, mask)[0]
x = x + self.mlp(self.norm2(x))
return x
def __init__(self, dim_self, dim_ref, num_heads, mlp_ratio=4., bias=False, dropout=0., act=nnf.relu,
norm_layer: nn.Module = nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim_self)
self.attn = MultiHeadAttention(dim_self, dim_ref, num_heads, bias=bias, dropout=dropout)
self.norm2 = norm_layer(dim_self)
self.mlp = MlpTransformer(dim_self, int(dim_self * mlp_ratio), act=act, dropout=dropout)
class Transformer(nn.Module):
def forward_with_attention(self, x, y=None, mask=None):
attentions = []
for layer in self.layers:
x, att = layer.forward_with_attention(x, y, mask)
attentions.append(att)
return x, attentions
def forward(self, x, y=None, mask=None):
for i, layer in enumerate(self.layers):
if i % 2 == 0 and self.enc_dec: # cross
x = layer(x, y)
elif self.enc_dec: # self
x = layer(x, x, mask)
else: # self or cross
x = layer(x, y, mask)
return x
def __init__(self, dim_self: int, num_heads: int, num_layers: int, dim_ref: Optional[int] = None,
mlp_ratio: float = 2., act=nnf.relu, norm_layer: nn.Module = nn.LayerNorm, enc_dec: bool = False):
super(Transformer, self).__init__()
dim_ref = dim_ref if dim_ref is not None else dim_self
self.enc_dec = enc_dec
if enc_dec:
num_layers = num_layers * 2
layers = []
for i in range(num_layers):
if i % 2 == 0 and enc_dec: # cross
layers.append(TransformerLayer(dim_self, dim_ref, num_heads, mlp_ratio, act=act, norm_layer=norm_layer))
elif enc_dec: # self
layers.append(TransformerLayer(dim_self, dim_self, num_heads, mlp_ratio, act=act, norm_layer=norm_layer))
else: # self or cross
layers.append(TransformerLayer(dim_self, dim_ref, num_heads, mlp_ratio, act=act, norm_layer=norm_layer))
self.layers = nn.ModuleList(layers)
class TransformerMapper(nn.Module):
def forward(self, x):
x = self.linear(x).view(x.shape[0], self.clip_length, -1)
prefix = self.prefix_const.unsqueeze(0).expand(x.shape[0], *self.prefix_const.shape)
prefix = torch.cat((x, prefix), dim=1)
out = self.transformer(prefix)[:, self.clip_length:]
return out
def __init__(self, dim_clip: int, dim_embedding: int, prefix_length: int, clip_length: int, num_layers: int = 8):
super(TransformerMapper, self).__init__()
self.clip_length = clip_length
self.transformer = Transformer(dim_embedding, 8, num_layers)
self.linear = nn.Linear(dim_clip, clip_length * dim_embedding)
self.prefix_const = nn.Parameter(torch.randn(prefix_length, dim_embedding), requires_grad=True)