Spaces:
Runtime error
Runtime error
Johannes
commited on
Commit
β’
80019c9
1
Parent(s):
c18005d
init
Browse files- README.md +2 -2
- app.py +234 -0
- requirements.txt +2 -0
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: Species Distribution Modeling
|
3 |
-
emoji:
|
4 |
colorFrom: green
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.35.2
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
title: Species Distribution Modeling
|
3 |
+
emoji: π¦₯π
|
4 |
colorFrom: green
|
5 |
+
colorTo: white
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.35.2
|
8 |
app_file: app.py
|
app.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from time import time
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
|
7 |
+
from sklearn.utils import Bunch
|
8 |
+
from sklearn.datasets import fetch_species_distributions
|
9 |
+
from sklearn import svm, metrics
|
10 |
+
|
11 |
+
from typing import Union
|
12 |
+
|
13 |
+
try:
|
14 |
+
from mpl_toolkits.basemap import Basemap
|
15 |
+
|
16 |
+
basemap = True
|
17 |
+
except ImportError:
|
18 |
+
basemap = False
|
19 |
+
|
20 |
+
|
21 |
+
def construct_grids(batch):
|
22 |
+
"""Construct the map grid from the batch object
|
23 |
+
|
24 |
+
Parameters
|
25 |
+
----------
|
26 |
+
batch : Batch object
|
27 |
+
The object returned by :func:`fetch_species_distributions`
|
28 |
+
|
29 |
+
Returns
|
30 |
+
-------
|
31 |
+
(xgrid, ygrid) : 1-D arrays
|
32 |
+
The grid corresponding to the values in batch.coverages
|
33 |
+
"""
|
34 |
+
# x,y coordinates for corner cells
|
35 |
+
xmin = batch.x_left_lower_corner + batch.grid_size
|
36 |
+
xmax = xmin + (batch.Nx * batch.grid_size)
|
37 |
+
ymin = batch.y_left_lower_corner + batch.grid_size
|
38 |
+
ymax = ymin + (batch.Ny * batch.grid_size)
|
39 |
+
|
40 |
+
# x coordinates of the grid cells
|
41 |
+
xgrid = np.arange(xmin, xmax, batch.grid_size)
|
42 |
+
# y coordinates of the grid cells
|
43 |
+
ygrid = np.arange(ymin, ymax, batch.grid_size)
|
44 |
+
|
45 |
+
return (xgrid, ygrid)
|
46 |
+
|
47 |
+
|
48 |
+
def create_species_bunch(species_name, train, test, coverages, xgrid, ygrid):
|
49 |
+
"""Create a bunch with information about a particular organism
|
50 |
+
|
51 |
+
This will use the test/train record arrays to extract the
|
52 |
+
data specific to the given species name.
|
53 |
+
"""
|
54 |
+
bunch = Bunch(name=" ".join(species_name.split("_")[:2]))
|
55 |
+
species_name = species_name.encode("ascii")
|
56 |
+
points = dict(test=test, train=train)
|
57 |
+
|
58 |
+
for label, pts in points.items():
|
59 |
+
# choose points associated with the desired species
|
60 |
+
pts = pts[pts["species"] == species_name]
|
61 |
+
bunch["pts_%s" % label] = pts
|
62 |
+
|
63 |
+
# determine coverage values for each of the training & testing points
|
64 |
+
ix = np.searchsorted(xgrid, pts["dd long"])
|
65 |
+
iy = np.searchsorted(ygrid, pts["dd lat"])
|
66 |
+
bunch["cov_%s" % label] = coverages[:, -iy, ix].T
|
67 |
+
|
68 |
+
return bunch
|
69 |
+
|
70 |
+
|
71 |
+
def translate_choice(choice: str) -> Union[str, tuple[str, str]]:
|
72 |
+
if choice == "Bradypus variegatus":
|
73 |
+
return "bradypus_variegatus_0"
|
74 |
+
elif choice == "Microryzomys minutus":
|
75 |
+
return "microryzomys_minutus_0"
|
76 |
+
else:
|
77 |
+
return ("bradypus_variegatus_0", "microryzomys_minutus_0")
|
78 |
+
|
79 |
+
|
80 |
+
def plot_species_distribution(
|
81 |
+
choice: Union[str, tuple[str, str]]
|
82 |
+
):
|
83 |
+
"""
|
84 |
+
Plot the species distribution.
|
85 |
+
"""
|
86 |
+
species = translate_choice(choice)
|
87 |
+
|
88 |
+
t0 = time()
|
89 |
+
|
90 |
+
# Load the compressed data
|
91 |
+
data = fetch_species_distributions()
|
92 |
+
|
93 |
+
# Set up the data grid
|
94 |
+
xgrid, ygrid = construct_grids(data)
|
95 |
+
|
96 |
+
# The grid in x,y coordinates
|
97 |
+
X, Y = np.meshgrid(xgrid, ygrid[::-1])
|
98 |
+
|
99 |
+
species_bunches = []
|
100 |
+
|
101 |
+
if isinstance(species, tuple):
|
102 |
+
# create a bunch for each species
|
103 |
+
BV_bunch = create_species_bunch(
|
104 |
+
species[0], data.train, data.test, data.coverages, xgrid, ygrid
|
105 |
+
)
|
106 |
+
MM_bunch = create_species_bunch(
|
107 |
+
species[1], data.train, data.test, data.coverages, xgrid, ygrid
|
108 |
+
)
|
109 |
+
|
110 |
+
species_bunches.extend([BV_bunch, MM_bunch])
|
111 |
+
else:
|
112 |
+
# create a bunch for the given species
|
113 |
+
species_bunch = create_species_bunch(
|
114 |
+
species, data.train, data.test, data.coverages, xgrid, ygrid
|
115 |
+
)
|
116 |
+
species_bunches.append(species_bunch)
|
117 |
+
|
118 |
+
# background points (grid coordinates) for evaluation
|
119 |
+
np.random.seed(13)
|
120 |
+
background_points = np.c_[
|
121 |
+
np.random.randint(low=0, high=data.Ny, size=10000),
|
122 |
+
np.random.randint(low=0, high=data.Nx, size=10000),
|
123 |
+
].T
|
124 |
+
|
125 |
+
# We'll make use of the fact that coverages[6] has measurements at all
|
126 |
+
# land points. This will help us decide between land and water.
|
127 |
+
land_reference = data.coverages[6]
|
128 |
+
|
129 |
+
# Fit, predict, and plot for each species.
|
130 |
+
for i, species in enumerate(species_bunches):
|
131 |
+
print("_" * 80)
|
132 |
+
print("Modeling distribution of species '%s'" % species.name)
|
133 |
+
|
134 |
+
# Standardize features
|
135 |
+
mean = species.cov_train.mean(axis=0)
|
136 |
+
std = species.cov_train.std(axis=0)
|
137 |
+
train_cover_std = (species.cov_train - mean) / std
|
138 |
+
|
139 |
+
# Fit OneClassSVM
|
140 |
+
print(" - fit OneClassSVM ... ", end="")
|
141 |
+
clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.5)
|
142 |
+
clf.fit(train_cover_std)
|
143 |
+
print("done.")
|
144 |
+
|
145 |
+
# Plot map of South America
|
146 |
+
plt.subplot(1, len(species_bunches), i + 1)
|
147 |
+
if basemap:
|
148 |
+
print(" - plot coastlines using basemap")
|
149 |
+
m = Basemap(
|
150 |
+
projection="cyl",
|
151 |
+
llcrnrlat=Y.min(),
|
152 |
+
urcrnrlat=Y.max(),
|
153 |
+
llcrnrlon=X.min(),
|
154 |
+
urcrnrlon=X.max(),
|
155 |
+
resolution="c",
|
156 |
+
)
|
157 |
+
m.drawcoastlines()
|
158 |
+
m.drawcountries()
|
159 |
+
else:
|
160 |
+
print(" - plot coastlines from coverage")
|
161 |
+
plt.contour(
|
162 |
+
X, Y, land_reference, levels=[-9998], colors="k", linestyles="solid"
|
163 |
+
)
|
164 |
+
plt.xticks([])
|
165 |
+
plt.yticks([])
|
166 |
+
|
167 |
+
print(" - predict species distribution")
|
168 |
+
|
169 |
+
# Predict species distribution using the training data
|
170 |
+
Z = np.ones((data.Ny, data.Nx), dtype=np.float64)
|
171 |
+
|
172 |
+
# We'll predict only for the land points.
|
173 |
+
idx = np.where(land_reference > -9999)
|
174 |
+
coverages_land = data.coverages[:, idx[0], idx[1]].T
|
175 |
+
|
176 |
+
pred = clf.decision_function((coverages_land - mean) / std)
|
177 |
+
Z *= pred.min()
|
178 |
+
Z[idx[0], idx[1]] = pred
|
179 |
+
|
180 |
+
levels = np.linspace(Z.min(), Z.max(), 25)
|
181 |
+
Z[land_reference == -9999] = -9999
|
182 |
+
|
183 |
+
# plot contours of the prediction
|
184 |
+
plt.contourf(X, Y, Z, levels=levels, cmap="Reds")
|
185 |
+
plt.colorbar(format="%.2f")
|
186 |
+
|
187 |
+
# scatter training/testing points
|
188 |
+
plt.scatter(
|
189 |
+
species.pts_train["dd long"],
|
190 |
+
species.pts_train["dd lat"],
|
191 |
+
s=2**2,
|
192 |
+
c="black",
|
193 |
+
marker="^",
|
194 |
+
label="train",
|
195 |
+
)
|
196 |
+
plt.scatter(
|
197 |
+
species.pts_test["dd long"],
|
198 |
+
species.pts_test["dd lat"],
|
199 |
+
s=2**2,
|
200 |
+
c="black",
|
201 |
+
marker="x",
|
202 |
+
label="test",
|
203 |
+
)
|
204 |
+
plt.legend()
|
205 |
+
plt.title(species.name)
|
206 |
+
plt.axis("equal")
|
207 |
+
|
208 |
+
# Compute AUC with regards to background points
|
209 |
+
pred_background = Z[background_points[0], background_points[1]]
|
210 |
+
pred_test = clf.decision_function((species.cov_test - mean) / std)
|
211 |
+
scores = np.r_[pred_test, pred_background]
|
212 |
+
y = np.r_[np.ones(pred_test.shape), np.zeros(pred_background.shape)]
|
213 |
+
fpr, tpr, thresholds = metrics.roc_curve(y, scores)
|
214 |
+
roc_auc = metrics.auc(fpr, tpr)
|
215 |
+
plt.text(-35, -70, "AUC: %.3f" % roc_auc, ha="right")
|
216 |
+
print("\n Area under the ROC curve : %f" % roc_auc)
|
217 |
+
|
218 |
+
print("\ntime elapsed: %.2fs" % (time() - t0))
|
219 |
+
return plt
|
220 |
+
|
221 |
+
|
222 |
+
iface = gr.Interface(
|
223 |
+
fn=plot_species_distribution,
|
224 |
+
inputs=gr.Radio(choices=["Bradypus variegatus","Microryzomys minutus", "Both"],
|
225 |
+
value="Bradypus variegatus",
|
226 |
+
label="Species"),
|
227 |
+
outputs=gr.Plot(label="Distribution Map"),
|
228 |
+
title="Species Distribution Map",
|
229 |
+
description="""This app predicts the distribution of a species using a OneClassSVM. Following [this tutorial](https://scikit-learn.org/stable/auto_examples/applications/plot_species_distribution_modeling.html#sphx-glr-auto-examples-applications-plot-species-distribution-modeling-py) from sklearn""",
|
230 |
+
examples=[
|
231 |
+
["Bradypus variegatus"],
|
232 |
+
["Microryzomys minutus"]])
|
233 |
+
|
234 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
scikit-learn
|
2 |
+
basemap
|