Spaces:
Runtime error
Runtime error
File size: 7,830 Bytes
25faaaf 5e9c7fb 25faaaf 5e9c7fb 25faaaf 5e9c7fb 25faaaf 5e9c7fb 25faaaf 5e9c7fb 25faaaf 5e9c7fb 99f9a4a 5e9c7fb 25faaaf 5e9c7fb 25faaaf 5e9c7fb 25faaaf 5e9c7fb 25faaaf 5e9c7fb 25faaaf 5e9c7fb 25faaaf 5e9c7fb 25faaaf 5e9c7fb 25faaaf 5e9c7fb 25faaaf 5e9c7fb 25faaaf 5e9c7fb 25faaaf 5e9c7fb 25faaaf 5e9c7fb 25faaaf 5e9c7fb 25faaaf 5e9c7fb 25faaaf 5e9c7fb 25faaaf 5e9c7fb 25faaaf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import random
import re
import gradio as gr
import torch
from transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
from transformers import AutoModelForSeq2SeqLM
from transformers import AutoProcessor
from transformers import pipeline
from transformers import set_seed
device = "cuda" if torch.cuda.is_available() else "cpu"
big_processor = AutoProcessor.from_pretrained("microsoft/git-base-coco")
big_model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco")
text_pipe = pipeline('text-generation', model='succinctly/text2image-prompt-generator')
zh2en_model = AutoModelForSeq2SeqLM.from_pretrained('Helsinki-NLP/opus-mt-zh-en').eval()
zh2en_tokenizer = AutoTokenizer.from_pretrained('Helsinki-NLP/opus-mt-zh-en')
en2zh_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-zh").eval()
en2zh_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-zh")
def translate_zh2en(text):
with torch.no_grad():
text = re.sub(r'([^\u4e00-\u9fa5])([\u4e00-\u9fa5])', r'\1\n\2', text)
text = re.sub(r'([\u4e00-\u9fa5])([^\u4e00-\u9fa5])', r'\1\n\2', text)
text = text.replace('\n', ',')
text =re.sub(r'(?<![a-zA-Z])\s+|\s+(?![a-zA-Z])', '', text)
text = re.sub(r',+', ',', text)
encoded = zh2en_tokenizer([text], return_tensors='pt')
sequences = zh2en_model.generate(**encoded)
result = zh2en_tokenizer.batch_decode(sequences, skip_special_tokens=True)[0]
result = result.strip()
if result != "No,no," :
result = text
return result
def translate_en2zh(text):
with torch.no_grad():
encoded = en2zh_tokenizer([text], return_tensors="pt")
sequences = en2zh_model.generate(**encoded)
return en2zh_tokenizer.batch_decode(sequences, skip_special_tokens=True)[0]
def test05(text):
return text
def test06(text):
return text
def text_generate(text):
seed = random.randint(100, 1000000)
set_seed(seed)
text_in_english = translate_zh2en(text)
result = ""
for _ in range(6):
sequences = text_pipe(text_in_english, max_length=random.randint(60, 90), num_return_sequences=8)
list = []
for sequence in sequences:
line = sequence['generated_text'].strip()
if line != text_in_english and len(line) > (len(text_in_english) + 4):
list.append(translate_en2zh(line)+"\n")
list.append(line+"\n")
list.append("\n")
result = "".join(list)
result = re.sub('[^ ]+\.[^ ]+', '', result)
result = result.replace('<', '').replace('>', '')
if result != '':
break
return result
def load_prompter():
prompter_model = AutoModelForCausalLM.from_pretrained("microsoft/Promptist")
tokenizer = AutoTokenizer.from_pretrained("gpt2")
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
return prompter_model, tokenizer
prompter_model, prompter_tokenizer = load_prompter()
def generate_prompter(text):
text = translate_zh2en(text)
input_ids = prompter_tokenizer(text.strip()+" Rephrase:", return_tensors="pt").input_ids
eos_id = prompter_tokenizer.eos_token_id
outputs = prompter_model.generate(
input_ids,
do_sample=False,
max_new_tokens=75,
num_beams=3,
num_return_sequences=3,
eos_token_id=eos_id,
pad_token_id=eos_id,
length_penalty=-1.0
)
output_texts = prompter_tokenizer.batch_decode(outputs, skip_special_tokens=True)
result = []
for output_text in output_texts:
output_text = output_text.replace('<', '').replace('>', '')
output_text = output_text.split("Rephrase:", 1)[-1].strip()
result.append(translate_en2zh(output_text)+"\n")
result.append(output_text+"\n")
result.append("\n")
return "".join(result)
def combine_text(text):
text01 = generate_prompter(text)
text02 = text_generate(text)
return text01,text02
def get_prompt_from_image(input_image):
image = input_image.convert('RGB')
pixel_values = big_processor(images=image, return_tensors="pt").to(device).pixel_values
generated_ids = big_model.to(device).generate(pixel_values=pixel_values, max_length=50)
generated_caption = big_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
result01 = generate_prompter(generated_caption)
result02 = text_generate(generated_caption)
return result01,result02
with gr.Blocks() as block:
with gr.Column():
with gr.Tab('工作區'):
with gr.Row():
input_text = gr.Textbox(lines=12, label='輸入文字', placeholder='在此输入文字...')
input_image = gr.Image(type='pil')
with gr.Row():
txt_prompter_btn = gr.Button('文生文')
pic_prompter_btn = gr.Button('圖生文')
with gr.Row():
Textbox_1 = gr.Textbox(lines=6, label='生成方式A')
with gr.Row():
Textbox_2 = gr.Textbox(lines=6, label='生成方式B')
with gr.Tab('測試區'):
with gr.Row():
input_test01 = gr.Textbox(lines=2, label='中英翻譯', placeholder='在此输入文字...')
test01_btn = gr.Button('執行')
Textbox_test01 = gr.Textbox(lines=2, label='輸出結果')
with gr.Row():
input_test02 = gr.Textbox(lines=2, label='英中翻譯', placeholder='在此输入文字...')
test02_btn = gr.Button('執行')
Textbox_test02 = gr.Textbox(lines=2, label='輸出結果')
with gr.Row():
input_test03 = gr.Textbox(lines=2, label='SD模式', placeholder='在此输入文字...')
test03_btn = gr.Button('執行')
Textbox_test03 = gr.Textbox(lines=2, label='輸出結果')
with gr.Row():
input_test04 = gr.Textbox(lines=2, label='瞎掰模式', placeholder='在此输入文字...')
test04_btn = gr.Button('執行')
Textbox_test04 = gr.Textbox(lines=2, label='輸出結果')
with gr.Row():
input_test05 = gr.Textbox(lines=2, label='沒作用', placeholder='在此输入文字...')
test05_btn = gr.Button('執行')
Textbox_test05 = gr.Textbox(lines=2, label='輸出結果')
with gr.Row():
input_test06 = gr.Textbox(lines=2, label='沒作用', placeholder='在此输入文字...')
test06_btn = gr.Button('執行')
Textbox_test06 = gr.Textbox(lines=2, label='輸出結果')
txt_prompter_btn.click(
fn=combine_text,
inputs=input_text,
outputs=[Textbox_1,Textbox_2]
)
pic_prompter_btn.click(
fn=get_prompt_from_image,
inputs=input_image,
outputs=[Textbox_1,Textbox_2]
)
test01_btn.click(
fn=translate_zh2en,
inputs=input_test01,
outputs=Textbox_test01
)
test02_btn.click(
fn=translate_en2zh,
inputs=input_test02,
outputs=Textbox_test02
)
test03_btn.click(
fn=generate_prompter,
inputs=input_test03,
outputs=Textbox_test03
)
test04_btn.click(
fn=text_generate,
inputs=input_test04,
outputs=Textbox_test04
)
test05_btn.click(
fn=test05,
inputs=input_test05,
outputs=Textbox_test05
)
test06_btn.click(
fn=test06,
inputs=input_test06,
outputs=Textbox_test06
)
block.queue(max_size=64).launch(show_api=False, enable_queue=True, debug=True, share=False, server_name='0.0.0.0')
|