File size: 7,830 Bytes
25faaaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e9c7fb
 
25faaaf
5e9c7fb
 
25faaaf
5e9c7fb
25faaaf
5e9c7fb
25faaaf
5e9c7fb
25faaaf
 
 
5e9c7fb
 
 
99f9a4a
 
5e9c7fb
 
25faaaf
 
 
5e9c7fb
25faaaf
 
 
 
5e9c7fb
 
 
 
 
 
 
 
 
25faaaf
 
 
 
 
 
 
 
 
 
 
5e9c7fb
25faaaf
 
5e9c7fb
 
 
 
 
25faaaf
5e9c7fb
25faaaf
 
 
5e9c7fb
 
25faaaf
 
5e9c7fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25faaaf
5e9c7fb
 
 
 
 
 
 
 
 
 
 
 
25faaaf
 
 
 
 
 
5e9c7fb
 
 
25faaaf
 
 
5e9c7fb
25faaaf
 
5e9c7fb
25faaaf
5e9c7fb
 
25faaaf
5e9c7fb
25faaaf
5e9c7fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25faaaf
 
5e9c7fb
25faaaf
 
 
 
 
 
 
5e9c7fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25faaaf
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import random
import re

import gradio as gr
import torch

from transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
from transformers import AutoModelForSeq2SeqLM

from transformers import AutoProcessor

from transformers import pipeline

from transformers import set_seed

device = "cuda" if torch.cuda.is_available() else "cpu"

big_processor = AutoProcessor.from_pretrained("microsoft/git-base-coco")
big_model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco")

text_pipe = pipeline('text-generation', model='succinctly/text2image-prompt-generator')

zh2en_model = AutoModelForSeq2SeqLM.from_pretrained('Helsinki-NLP/opus-mt-zh-en').eval()
zh2en_tokenizer = AutoTokenizer.from_pretrained('Helsinki-NLP/opus-mt-zh-en')

en2zh_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-zh").eval()
en2zh_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-zh")


def translate_zh2en(text):
    with torch.no_grad():

        text = re.sub(r'([^\u4e00-\u9fa5])([\u4e00-\u9fa5])', r'\1\n\2', text)
        text = re.sub(r'([\u4e00-\u9fa5])([^\u4e00-\u9fa5])', r'\1\n\2', text)

        text = text.replace('\n', ',')

        text =re.sub(r'(?<![a-zA-Z])\s+|\s+(?![a-zA-Z])', '', text)

        text = re.sub(r',+', ',', text)

        encoded = zh2en_tokenizer([text], return_tensors='pt')
        sequences = zh2en_model.generate(**encoded)
        result = zh2en_tokenizer.batch_decode(sequences, skip_special_tokens=True)[0]

        result = result.strip() 
        if result != "No,no," :
            result = text
        return result


def translate_en2zh(text):
    with torch.no_grad():

        encoded = en2zh_tokenizer([text], return_tensors="pt")
        sequences = en2zh_model.generate(**encoded)
        return en2zh_tokenizer.batch_decode(sequences, skip_special_tokens=True)[0]

def test05(text):

    return text

def test06(text):

    return text


def text_generate(text):
    seed = random.randint(100, 1000000)
    set_seed(seed)

    text_in_english = translate_zh2en(text)
    result = ""
    for _ in range(6):
        sequences = text_pipe(text_in_english, max_length=random.randint(60, 90), num_return_sequences=8)
        list = []
        for sequence in sequences:


            line = sequence['generated_text'].strip()

            if line != text_in_english and len(line) > (len(text_in_english) + 4):

                list.append(translate_en2zh(line)+"\n")
                list.append(line+"\n")
                list.append("\n")

        result = "".join(list)

        result = re.sub('[^ ]+\.[^ ]+', '', result)

        result = result.replace('<', '').replace('>', '')

        if result != '':
            break
    return result


def load_prompter():
    prompter_model = AutoModelForCausalLM.from_pretrained("microsoft/Promptist")
    tokenizer = AutoTokenizer.from_pretrained("gpt2")
    tokenizer.pad_token = tokenizer.eos_token
    tokenizer.padding_side = "left"
    return prompter_model, tokenizer

prompter_model, prompter_tokenizer = load_prompter()

def generate_prompter(text):
    text = translate_zh2en(text)

    input_ids = prompter_tokenizer(text.strip()+" Rephrase:", return_tensors="pt").input_ids
    eos_id = prompter_tokenizer.eos_token_id
    outputs = prompter_model.generate(
        input_ids,
        do_sample=False,
        max_new_tokens=75,
        num_beams=3,
        num_return_sequences=3,
        eos_token_id=eos_id,
        pad_token_id=eos_id,
        length_penalty=-1.0
    )
    output_texts = prompter_tokenizer.batch_decode(outputs, skip_special_tokens=True)

    result = []
    for output_text in output_texts:

        output_text = output_text.replace('<', '').replace('>', '')
        output_text = output_text.split("Rephrase:", 1)[-1].strip()

        result.append(translate_en2zh(output_text)+"\n")
        result.append(output_text+"\n")
        result.append("\n")
    return "".join(result)

def combine_text(text):
    text01 = generate_prompter(text)
    text02 = text_generate(text)
    return text01,text02

def get_prompt_from_image(input_image):
    image = input_image.convert('RGB')
    pixel_values = big_processor(images=image, return_tensors="pt").to(device).pixel_values
    generated_ids = big_model.to(device).generate(pixel_values=pixel_values, max_length=50)
    generated_caption = big_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
    result01 = generate_prompter(generated_caption)
    result02 = text_generate(generated_caption)
    return result01,result02

with gr.Blocks() as block:
    with gr.Column():
        with gr.Tab('工作區'):
            with gr.Row():
                input_text = gr.Textbox(lines=12, label='輸入文字', placeholder='在此输入文字...')
                input_image = gr.Image(type='pil')
            with gr.Row():
                txt_prompter_btn = gr.Button('文生文')
                pic_prompter_btn = gr.Button('圖生文')
            with gr.Row():
                Textbox_1 = gr.Textbox(lines=6, label='生成方式A')
            with gr.Row():
                Textbox_2 = gr.Textbox(lines=6, label='生成方式B')
        with gr.Tab('測試區'):
            with gr.Row():
                input_test01 = gr.Textbox(lines=2, label='中英翻譯', placeholder='在此输入文字...')
                test01_btn = gr.Button('執行')
                Textbox_test01 = gr.Textbox(lines=2, label='輸出結果')
            with gr.Row():
                input_test02 = gr.Textbox(lines=2, label='英中翻譯', placeholder='在此输入文字...')
                test02_btn = gr.Button('執行')
                Textbox_test02 = gr.Textbox(lines=2, label='輸出結果')
            with gr.Row():
                input_test03 = gr.Textbox(lines=2, label='SD模式', placeholder='在此输入文字...')
                test03_btn = gr.Button('執行')
                Textbox_test03 = gr.Textbox(lines=2, label='輸出結果')
            with gr.Row():
                input_test04 = gr.Textbox(lines=2, label='瞎掰模式', placeholder='在此输入文字...')
                test04_btn = gr.Button('執行')
                Textbox_test04 = gr.Textbox(lines=2, label='輸出結果')
            with gr.Row():
                input_test05 = gr.Textbox(lines=2, label='沒作用', placeholder='在此输入文字...')
                test05_btn = gr.Button('執行')
                Textbox_test05 = gr.Textbox(lines=2, label='輸出結果')
            with gr.Row():
                input_test06 = gr.Textbox(lines=2, label='沒作用', placeholder='在此输入文字...')
                test06_btn = gr.Button('執行')
                Textbox_test06 = gr.Textbox(lines=2, label='輸出結果')

    txt_prompter_btn.click(
        fn=combine_text,
        inputs=input_text, 
        outputs=[Textbox_1,Textbox_2]
    )

    pic_prompter_btn.click(
        fn=get_prompt_from_image,
        inputs=input_image,
        outputs=[Textbox_1,Textbox_2]
    )

    test01_btn.click(
        fn=translate_zh2en,
        inputs=input_test01,
        outputs=Textbox_test01
    )

    test02_btn.click(
        fn=translate_en2zh,
        inputs=input_test02,
        outputs=Textbox_test02
    )

    test03_btn.click(
        fn=generate_prompter,
        inputs=input_test03,
        outputs=Textbox_test03
    )

    test04_btn.click(
        fn=text_generate,
        inputs=input_test04,
        outputs=Textbox_test04
    )
    test05_btn.click(
        fn=test05,
        inputs=input_test05,
        outputs=Textbox_test05
    )
    test06_btn.click(
        fn=test06,
        inputs=input_test06,
        outputs=Textbox_test06
    )

block.queue(max_size=64).launch(show_api=False, enable_queue=True, debug=True, share=False, server_name='0.0.0.0')