import random import re import gradio as gr import torch from transformers import AutoModelForCausalLM from transformers import AutoModelForSeq2SeqLM from transformers import AutoTokenizer from transformers import AutoProcessor from transformers import pipeline from transformers import set_seed global ButtonIndex device = "cuda" if torch.cuda.is_available() else "cpu" big_processor = AutoProcessor.from_pretrained("microsoft/git-base-coco") big_model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco") pipeline_01 = pipeline('text-generation', model='succinctly/text2image-prompt-generator', max_new_tokens=256) pipeline_02 = pipeline('text-generation', model='Gustavosta/MagicPrompt-Stable-Diffusion', max_new_tokens=256) pipeline_03 = pipeline('text-generation', model='johnsu6616/ModelExport', max_new_tokens=256) zh2en_model = AutoModelForSeq2SeqLM.from_pretrained('Helsinki-NLP/opus-mt-zh-en').eval() zh2en_tokenizer = AutoTokenizer.from_pretrained('Helsinki-NLP/opus-mt-zh-en') en2zh_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-zh").eval() en2zh_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-zh") def translate_zh2en(text): with torch.no_grad(): text = re.sub(r"[:\-–.!;?_#]", '', text) text = re.sub(r'([^\u4e00-\u9fa5])([\u4e00-\u9fa5])', r'\1\n\2', text) text = re.sub(r'([\u4e00-\u9fa5])([^\u4e00-\u9fa5])', r'\1\n\2', text) text = text.replace('\n', ',') text =re.sub(r'(?', '', result) result = re.sub(r'\b(\w+)\b(?:\W+\1\b)+', r'\1', result, flags=re.IGNORECASE) return result def translate_en2zh(text): with torch.no_grad(): encoded = en2zh_tokenizer([text], return_tensors="pt") sequences = en2zh_model.generate(**encoded) result = en2zh_tokenizer.batch_decode(sequences, skip_special_tokens=True)[0] result = re.sub(r'\b(\w+)\b(?:\W+\1\b)+', r'\1', result, flags=re.IGNORECASE) return result def load_prompter(): prompter_model = AutoModelForCausalLM.from_pretrained("microsoft/Promptist") tokenizer = AutoTokenizer.from_pretrained("gpt2") tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "left" return prompter_model, tokenizer prompter_model, prompter_tokenizer = load_prompter() def generate_prompter_pipeline_01(text): seed = random.randint(100, 1000000) set_seed(seed) text_in_english = translate_zh2en(text) response = pipeline_01(text_in_english, num_return_sequences=3) response_list = [] for x in response: resp = x['generated_text'].strip() if resp != text_in_english and len(resp) > (len(text_in_english) + 4): response_list.append(translate_en2zh(resp)+"\n") response_list.append(resp+"\n") response_list.append("\n") result = "".join(response_list) result = re.sub('[^ ]+\.[^ ]+','', result) result = result.replace("<", "").replace(">", "") if result != "": return result def generate_prompter_tokenizer_01(text): text_in_english = translate_zh2en(text) input_ids = prompter_tokenizer(text_in_english.strip()+" Rephrase:", return_tensors="pt").input_ids outputs = prompter_model.generate( input_ids, do_sample=False, num_beams=3, num_return_sequences=3, pad_token_id= 50256, eos_token_id = 50256, length_penalty=-1.0 ) output_texts = prompter_tokenizer.batch_decode(outputs, skip_special_tokens=True) result = [] for output_text in output_texts: output_text = output_text.replace('<', '').replace('>', '') output_text = output_text.split("Rephrase:", 1)[-1].strip() result.append(translate_en2zh(output_text)+"\n") result.append(output_text+"\n") result.append("\n") return "".join(result) def generate_prompter_pipeline_02(text): seed = random.randint(100, 1000000) set_seed(seed) text_in_english = translate_zh2en(text) response = pipeline_02(text_in_english, num_return_sequences=3) response_list = [] for x in response: resp = x['generated_text'].strip() if resp != text_in_english and len(resp) > (len(text_in_english) + 4): response_list.append(translate_en2zh(resp)+"\n") response_list.append(resp+"\n") response_list.append("\n") result = "".join(response_list) result = re.sub('[^ ]+\.[^ ]+','', result) result = result.replace("<", "").replace(">", "") if result != "": return result def generate_prompter_pipeline_03(text): seed = random.randint(100, 1000000) set_seed(seed) text_in_english = translate_zh2en(text) response = pipeline_03(text_in_english, num_return_sequences=3) response_list = [] for x in response: resp = x['generated_text'].strip() if resp != text_in_english and len(resp) > (len(text_in_english) + 4): response_list.append(translate_en2zh(resp)+"\n") response_list.append(resp+"\n") response_list.append("\n") result = "".join(response_list) result = re.sub('[^ ]+\.[^ ]+','', result) result = result.replace("<", "").replace(">", "") if result != "": return result def generate_render(text,choice): if choice == '★pipeline模式(succinctly)': outputs = generate_prompter_pipeline_01(text) return outputs,choice elif choice == '★★tokenizer模式': outputs = generate_prompter_tokenizer_01(text) return outputs,choice elif choice == '★★★pipeline模型(Gustavosta)': outputs = generate_prompter_pipeline_02(text) return outputs,choice elif choice == 'pipeline模型(John)_自訓測試,資料不穩定': outputs = generate_prompter_pipeline_03(text) return outputs,choice def get_prompt_from_image(input_image,choice): image = input_image.convert('RGB') pixel_values = big_processor(images=image, return_tensors="pt").to(device).pixel_values generated_ids = big_model.to(device).generate(pixel_values=pixel_values) generated_caption = big_processor.batch_decode(generated_ids, skip_special_tokens=True)[0] text = re.sub(r"[:\-–.!;?_#]", '', generated_caption) if choice == '★pipeline模式(succinctly)': outputs = generate_prompter_pipeline_01(text) return outputs elif choice == '★★tokenizer模式': outputs = generate_prompter_tokenizer_01(text) return outputs elif choice == '★★★pipeline模型(Gustavosta)': outputs = generate_prompter_pipeline_02(text) return outputs elif choice == 'pipeline模型(John)_自訓測試,資料不穩定': outputs = generate_prompter_pipeline_03(text) return outputs with gr.Blocks() as block: with gr.Column(): with gr.Tab('工作區'): with gr.Row(): input_text = gr.Textbox(lines=12, label='輸入文字', placeholder='在此输入文字...') input_image = gr.Image(type='pil', label="選擇圖片(辨識度不佳)") with gr.Row(): txt_prompter_btn = gr.Button('文生文') pic_prompter_btn = gr.Button('圖生文') with gr.Row(): radio_btn = gr.Radio( label="請選擇產出方式", choices=['★pipeline模式(succinctly)', '★★tokenizer模式', '★★★pipeline模型(Gustavosta)', 'pipeline模型(John)_自訓測試,資料不穩定'], value='★pipeline模式(succinctly)' ) with gr.Row(): Textbox_1 = gr.Textbox(lines=6, label='提示詞生成') with gr.Row(): Textbox_2 = gr.Textbox(lines=6, label='測試資訊') with gr.Tab('測試區'): with gr.Row(): input_test01 = gr.Textbox(lines=2, label='中英翻譯', placeholder='在此输入文字...') test01_btn = gr.Button('執行') Textbox_test01 = gr.Textbox(lines=2, label='輸出結果') with gr.Row(): input_test02 = gr.Textbox(lines=2, label='英中翻譯(不精準)', placeholder='在此输入文字...') test02_btn = gr.Button('執行') Textbox_test02 = gr.Textbox(lines=2, label='輸出結果') with gr.Row(): input_test03 = gr.Textbox(lines=2, label='★pipeline模式(succinctly)', placeholder='在此输入文字...') test03_btn = gr.Button('執行') Textbox_test03 = gr.Textbox(lines=2, label='輸出結果') with gr.Row(): input_test04 = gr.Textbox(lines=2, label='★★tokenizer模式', placeholder='在此输入文字...') test04_btn = gr.Button('執行') Textbox_test04 = gr.Textbox(lines=2, label='輸出結果') with gr.Row(): input_test05 = gr.Textbox(lines=2, label='★★★pipeline模型(Gustavosta)', placeholder='在此输入文字...') test05_btn = gr.Button('執行') Textbox_test05 = gr.Textbox(lines=2, label='輸出結果') with gr.Row(): input_test06 = gr.Textbox(lines=2, label='pipeline模型(John)_自訓測試,資料不穩定', placeholder='在此输入文字...') test06_btn = gr.Button('執行') Textbox_test06 = gr.Textbox(lines=2, label='輸出結果') txt_prompter_btn.click ( fn=generate_render, inputs=[input_text,radio_btn], outputs=[Textbox_1,Textbox_2] ) pic_prompter_btn.click( fn=get_prompt_from_image, inputs=[input_image,radio_btn], outputs=Textbox_1 ) test01_btn.click( fn=translate_zh2en, inputs=input_test01, outputs=Textbox_test01 ) test02_btn.click( fn=translate_en2zh, inputs=input_test02, outputs=Textbox_test02 ) test03_btn.click( fn= generate_prompter_pipeline_01, inputs=input_test03, outputs=Textbox_test03 ) test04_btn.click( fn= generate_prompter_tokenizer_01, inputs=input_test04, outputs=Textbox_test04 ) test05_btn.click( fn= generate_prompter_pipeline_02, inputs=input_test05, outputs=Textbox_test05 ) test06_btn.click( fn= generate_prompter_pipeline_03, inputs= input_test06, outputs= Textbox_test06 ) block.queue(max_size=64).launch(show_api=False, queue=True, debug=True, share=False, server_name='0.0.0.0')