Spaces:
Runtime error
Runtime error
import gradio as gr | |
import subprocess | |
import uuid | |
import os | |
import requests | |
import re | |
def get_pdf(pdf_link): | |
# Generate a unique filename | |
unique_filename = f"input/downloaded_paper_{uuid.uuid4().hex}.pdf" | |
# Send a GET request to the PDF link | |
response = requests.get(pdf_link) | |
if response.status_code == 200: | |
# Save the PDF content to a local file | |
with open(unique_filename, 'wb') as pdf_file: | |
pdf_file.write(response.content) | |
print("PDF downloaded successfully.") | |
else: | |
print("Failed to download the PDF.") | |
return unique_filename #.split('/')[-1][:-4] | |
def nougat_ocr(file_name): | |
#unique_filename = f"/content/output/downloaded_paper_{uuid.uuid4().hex}.pdf" | |
# Command to run | |
cli_command = [ | |
'nougat', | |
#'--out', unique_filename, | |
'--out', 'output', | |
'pdf', f'{file_name}', | |
'--checkpoint', 'nougat', | |
'--markdown' | |
] | |
# Run the command and capture its output | |
#completed_process = | |
subprocess.run(cli_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) | |
return #unique_filename | |
def predict(pdf_file, pdf_link): | |
if pdf_file is None: | |
if pdf_link == '': | |
print("No file is uploaded and No link is provided") | |
return "No data provided. Upload a pdf file or provide a pdf link and try again!" | |
else: | |
print(f'pdf_link is - {pdf_link}') | |
file_name = get_pdf(pdf_link) | |
print(f'file_name is - {file_name}') | |
else: | |
file_name = pdf_file.name | |
print(file_name) | |
pdf_name = pdf_file.name.split('/')[-1].split('.')[0] | |
print(pdf_name) | |
# Call nougat | |
nougat_ocr(file_name) | |
#print("BACKKKK") | |
# Open the file for reading | |
file_name = file_name.split('/')[-1][:-4] | |
with open(f'output/{file_name}.mmd', 'r') as file: | |
content = file.read() | |
# switch math delimiters | |
content = content.replace(r'\(', '$').replace(r'\)', '$').replace(r'\[', '$$').replace(r'\]', '$$') | |
return content | |
def nougat_ocr1(file_name): | |
print('******* inside nougat_ocr *******') | |
# CLI Command to run | |
cli_command = [ | |
'nougat', | |
'--out', 'output', | |
'pdf', f'{file_name}', | |
'--checkpoint', 'nougat', | |
'--markdown' | |
] | |
# Run the command and get .mmd file in an output folder | |
subprocess.run(cli_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) | |
return | |
def predict1(pdf_file): | |
print('******* inside predict *******') | |
print(f"temporary file - {pdf_file.name}") | |
pdf_name = pdf_file.name.split('/')[-1].split('.')[0] | |
print(f"pdf file name - {pdf_name}") | |
#! Get prediction for a PDF using nougat | |
nougat_ocr(pdf_file.name) | |
print("BAACCKKK") | |
# Open the multimarkdown (.mmd) file for reading | |
with open(f'output/{pdf_name}.mmd', 'r') as file: | |
content = file.read() | |
return content | |
def process_example(pdf_file,pdf_link): | |
ocr_content = predict(pdf_file,pdf_link) | |
return gr.update(value=ocr_content) | |
css = """ | |
#mkd { | |
height: 500px; | |
overflow: auto; | |
border: 1px solid #ccc; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML("<h1><center>Nougat: Neural Optical Understanding for Academic Documents<center><h1>") | |
gr.HTML("<h3><center>Lukas Blecher et al. <a href='https://arxiv.org/pdf/2308.13418.pdf' target='_blank'>Paper</a>, <a href='https://facebookresearch.github.io/nougat/'>Project</a><center></h3>") | |
with gr.Row(): | |
mkd = gr.Markdown('<h4><center>Upload a PDF</center></h4>',scale=1) | |
mkd = gr.Markdown('<h4><center><i>OR</i></center></h4>',scale=1) | |
mkd = gr.Markdown('<h4><center>Provide a PDF link</center></h4>',scale=1) | |
with gr.Row(equal_height=True): | |
pdf_file = gr.File(label='PDF📃', file_count='single', scale=1) | |
pdf_link = gr.Textbox(placeholder='Enter an Arxiv link here', label='PDF link🔗🌐', scale=1) | |
with gr.Row(): | |
btn = gr.Button('Run NOUGAT🍫') | |
clr = gr.Button('Clear🚿') | |
output_headline = gr.Markdown("<h3>PDF converted to markup language through Nougat-OCR👇:</h3>") | |
parsed_output = gr.Markdown(elem_id='mkd', value='📃🔤OCR Output') | |
btn.click(predict, [pdf_file, pdf_link], parsed_output ) | |
clr.click(lambda : (gr.update(value=None), | |
gr.update(value=None), | |
gr.update(value=None)), | |
[], | |
[pdf_file, pdf_link, parsed_output] | |
) | |
gr.Examples( | |
[["input/nougat.pdf", ""], [None, "https://arxiv.org/pdf/2308.08316.pdf"]], | |
inputs = [pdf_file, pdf_link], | |
outputs = parsed_output, | |
fn=process_example, | |
cache_examples=True, | |
label='Click on any Examples below to get Nougat OCR results quickly:' | |
) | |
demo.queue() | |
demo.launch(debug=True) | |