import gradio as gr import torch from sahi.prediction import ObjectPrediction from sahi.utils.cv import visualize_object_predictions, read_image # from ultralyticsplus import YOLO from ultralytics import YOLO # Images try: torch.hub.download_url_to_file("https://image.jimcdn.com/app/cms/image/transf/none/path/sb7e051baffe289da/image/i98db96643a3b080e/version/1416825261/image.jpg", "mg.jpg") except: torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'mg.jpg') # torch.hub.download_url_to_file("https://ikiwiki.iki.fi/_media/jot-email-1612-fi-iki.png", "fi.jpg") # torch.hub.download_url_to_file("https://www.geekculture.com/joyoftech/joyimages/1612.gif", "en.jpg") # torch.hub.download_url_to_file('https://user-images.githubusercontent.com/34196005/142742872-1fefcc4d-d7e6-4c43-bbb7-6b5982f7e4ba.jpg', 'highway1.jpg') # torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg') def yolov8_inference( image: gr.inputs.Image = None, model_path: gr.inputs.Dropdown = None, image_size: gr.inputs.Slider = 640, conf_threshold: gr.inputs.Slider = 0.25, iou_threshold: gr.inputs.Slider = 0.45, ): """ YOLOv8 inference function Args: image: Input image model_path: Path to the model image_size: Image size conf_threshold: Confidence threshold iou_threshold: IOU threshold Returns: Rendered image """ # model = YOLO(""+model_path+"/train/weights/best.onnx", task="detect") model = YOLO("https://huggingface.co/"+model_path+"/resolve/main/train/weights/best.onnx", task="detect") model.conf = conf_threshold model.iou = iou_threshold # results = model.predict(image, imgsz=image_size, return_outputs=True) results = model.predict(image) object_prediction_list = [] print("*", len(results)) for _box in results: for box in _box: xyxy = [int(x) for x in box.boxes.xyxy[0]] conf = float(box.boxes.conf[0]) cls = int(box.boxes.cls[0]) label = box.names[cls] #label = list(map(lambda x: box.names[int(x)], cls)) #for xyxy, conf, cls, label in zip(xyxy,conf,cls,label): object_prediction_list.append( ObjectPrediction( bbox=xyxy, category_id=cls, score=conf, category_name=label, ) ) print(object_prediction_list) # for _, image_results in enumerate(results): # if len(image_results)!=0: # image_predictions_in_xyxy_format = image_results['det'] # for pred in image_predictions_in_xyxy_format: # x1, y1, x2, y2 = ( # int(pred[0]), # int(pred[1]), # int(pred[2]), # int(pred[3]), # ) # bbox = [x1, y1, x2, y2] # score = pred[4] # category_name = model.model.names[int(pred[5])] # category_id = pred[5] # object_prediction = ObjectPrediction( # bbox=bbox, # category_id=int(category_id), # score=score, # category_name=category_name, # ) # object_prediction_list.append(object_prediction) image = read_image(image) output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list) return output_image['image'] inputs = [ gr.inputs.Image(type="filepath", label="Input Image"), # gr.inputs.Dropdown(["kadirnar/yolov8n-v8.0", "kadirnar/yolov8m-v8.0", "kadirnar/yolov8l-v8.0", "kadirnar/yolov8x-v8.0", "kadirnar/yolov8x6-v8.0"], # default="kadirnar/yolov8m-v8.0", label="Model"), # gr.inputs.Dropdown(["jongkook90/yolov8_comicbook"], default="jongkook90/yolov8_comicbook", label="Model"), gr.inputs.Dropdown(["jongkook90/yolov8_comicbook"], default="jongkook90/yolov8_comicbook", label="Model"), gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"), gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"), gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"), ] outputs = gr.outputs.Image(type="filepath", label="Output Image") title = "Ultralytics YOLOv8: State-of-the-Art YOLO Models" examples = [ ['mg.jpg', 'jongkook90/yolov8_comicbook', 640, 0.25, 0.45], #['fi.jpg', 'jongkook90/yolov8_comicbook', 640, 0.25, 0.45], #['en.jpg', 'jongkook90/yolov8_comicbook', 640, 0.25, 0.45], ] demo_app = gr.Interface( fn=yolov8_inference, inputs=inputs, outputs=outputs, title=title, examples=examples, cache_examples=True, theme='huggingface', ) demo_app.launch(debug=True, enable_queue=True)