|
import gradio as gr |
|
import huggingface_hub |
|
import onnxruntime as rt |
|
import numpy as np |
|
import cv2 |
|
|
|
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] |
|
model_path = huggingface_hub.hf_hub_download("skytnt/anime-seg", "isnetis.onnx") |
|
rmbg_model = rt.InferenceSession(model_path, providers=providers) |
|
|
|
def get_mask(img, s=1024): |
|
img = (img / 255).astype(np.float32) |
|
h, w = h0, w0 = img.shape[:-1] |
|
h, w = (s, int(s * w / h)) if h > w else (int(s * h / w), s) |
|
ph, pw = s - h, s - w |
|
img_input = np.zeros([s, s, 3], dtype=np.float32) |
|
img_input[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] = cv2.resize(img, (w, h)) |
|
img_input = np.transpose(img_input, (2, 0, 1)) |
|
img_input = img_input[np.newaxis, :] |
|
mask = rmbg_model.run(None, {'img': img_input})[0][0] |
|
mask = np.transpose(mask, (1, 2, 0)) |
|
mask = mask[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] |
|
mask = cv2.resize(mask, (w0, h0))[:, :, np.newaxis] |
|
return mask |
|
|
|
|
|
def remove_bg(img): |
|
mask = get_mask(img) |
|
img = (mask * img + 255 * (1 - mask)).astype(np.uint8) |
|
mask = (mask * 255).astype(np.uint8) |
|
img = np.concatenate([img, mask], axis=2, dtype=np.uint8) |
|
mask = mask.repeat(3, axis=2) |
|
return mask, img |
|
|
|
def split_image(img): |
|
mask = get_mask(img) |
|
inv_mask = 1 - mask |
|
fg = (mask * img + 255 * inv_mask).astype(np.uint8) |
|
bg = (inv_mask * img + 255 * mask).astype(np.uint8) |
|
mask = (mask * 255).astype(np.uint8) |
|
inv_mask = (inv_mask * 255).astype(np.uint8) |
|
fg = np.concatenate([fg, mask], axis=2, dtype=np.uint8) |
|
bg = np.concatenate([bg, inv_mask], axis=2, dtype=np.uint8) |
|
mask = mask.repeat(3, axis=2) |
|
return mask, fg, bg |
|
|
|
|
|
|