Spaces:
Runtime error
Runtime error
might have found a bug in binning
Browse files- app.py +166 -3
- local_app.py +43 -59
app.py
CHANGED
@@ -1,8 +1,171 @@
|
|
1 |
import evaluate
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
|
|
|
|
7 |
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import evaluate
|
2 |
+
import json
|
3 |
+
import sys
|
4 |
+
from pathlib import Path
|
5 |
+
import gradio as gr
|
6 |
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
import ast
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import matplotlib.patches as mpatches
|
12 |
|
13 |
+
plt.rcParams["figure.dpi"] = 300
|
14 |
+
plt.switch_backend(
|
15 |
+
"agg"
|
16 |
+
) # ; https://stackoverflow.com/questions/14694408/runtimeerror-main-thread-is-not-in-main-loop
|
17 |
|
18 |
|
19 |
+
def default_plot():
|
20 |
+
fig = plt.figure()
|
21 |
+
ax1 = plt.subplot2grid((3, 1), (0, 0), rowspan=2)
|
22 |
+
ax2 = plt.subplot2grid((3, 1), (2, 0))
|
23 |
+
ranged = np.linspace(0, 1, 10)
|
24 |
+
ax1.plot(
|
25 |
+
ranged,
|
26 |
+
ranged,
|
27 |
+
color="darkgreen",
|
28 |
+
ls="dotted",
|
29 |
+
label="Perfect",
|
30 |
+
)
|
31 |
+
|
32 |
+
# Bin differences
|
33 |
+
ax1.set_ylabel("Conditional Expectation")
|
34 |
+
ax1.set_ylim([0, 1.05])
|
35 |
+
ax1.set_title("Reliability Diagram")
|
36 |
+
ax1.set_xlim([-0.05, 1.05]) # respective to bin range
|
37 |
+
|
38 |
+
# Bin frequencies
|
39 |
+
ax2.set_xlabel("Confidence")
|
40 |
+
ax2.set_ylabel("Count")
|
41 |
+
ax2.set_xlim([-0.05, 1.05]) # respective to bin range
|
42 |
+
|
43 |
+
return fig, ax1, ax2
|
44 |
+
|
45 |
+
|
46 |
+
def reliability_plot(results):
|
47 |
+
# DEV: might still need to write tests in case of equal mass binning
|
48 |
+
# DEV: nicer would be to plot like a polygon
|
49 |
+
# see: https://github.com/markus93/fit-on-the-test/blob/main/Experiments_Synthetic/binnings.py
|
50 |
+
|
51 |
+
def over_under_confidence(results):
|
52 |
+
colors = []
|
53 |
+
for j, bin in enumerate(results["y_bar"]):
|
54 |
+
perfect = results["y_bar"][j]
|
55 |
+
empirical = results["p_bar"][j]
|
56 |
+
|
57 |
+
bin_color = (
|
58 |
+
"limegreen"
|
59 |
+
if np.allclose(perfect, empirical)
|
60 |
+
else "dodgerblue"
|
61 |
+
if empirical < perfect
|
62 |
+
else "orangered"
|
63 |
+
)
|
64 |
+
colors.append(bin_color)
|
65 |
+
return colors
|
66 |
+
|
67 |
+
fig, ax1, ax2 = default_plot()
|
68 |
+
|
69 |
+
# Bin differences
|
70 |
+
bins_with_left_edge = np.insert(results["y_bar"], 0, 0, axis=0)
|
71 |
+
B, bins, patches = ax1.hist(
|
72 |
+
results["y_bar"],
|
73 |
+
weights=np.nan_to_num(results["p_bar"][:-1], copy=True, nan=0),
|
74 |
+
bins=bins_with_left_edge,
|
75 |
+
)
|
76 |
+
colors = over_under_confidence(results)
|
77 |
+
for b in range(len(B)):
|
78 |
+
patches[b].set_facecolor(colors[b]) # color based on over/underconfidence
|
79 |
+
|
80 |
+
ax1handles = [
|
81 |
+
mpatches.Patch(color="orangered", label="Overconfident"),
|
82 |
+
mpatches.Patch(color="limegreen", label="Perfect", linestyle="dotted"),
|
83 |
+
mpatches.Patch(color="dodgerblue", label="Underconfident"),
|
84 |
+
]
|
85 |
+
|
86 |
+
# Bin frequencies
|
87 |
+
anindices = np.where(~np.isnan(results["p_bar"][:-1]))[0]
|
88 |
+
n_bins = len(results["y_bar"])
|
89 |
+
bin_freqs = np.zeros(n_bins)
|
90 |
+
bin_freqs[anindices] = results["bin_freq"]
|
91 |
+
B, newbins, patches = ax2.hist(
|
92 |
+
results["y_bar"], weights=bin_freqs, color="midnightblue", bins=bins_with_left_edge
|
93 |
+
)
|
94 |
+
|
95 |
+
acc_plt = ax2.axvline(x=results["accuracy"], ls="solid", lw=3, c="black", label="Accuracy")
|
96 |
+
conf_plt = ax2.axvline(
|
97 |
+
x=results["p_bar_cont"], ls="dotted", lw=3, c="#444", label="Avg. confidence"
|
98 |
+
)
|
99 |
+
|
100 |
+
ax1.legend(loc="lower right", handles=ax1handles)
|
101 |
+
ax2.legend(handles=[acc_plt, conf_plt])
|
102 |
+
ax1.set_xticks(bins_with_left_edge)
|
103 |
+
ax2.set_xticks(bins_with_left_edge)
|
104 |
+
plt.tight_layout()
|
105 |
+
return fig
|
106 |
+
|
107 |
+
|
108 |
+
def compute_and_plot(data, n_bins, bin_range, scheme, proxy, p):
|
109 |
+
# DEV: check on invalid datatypes with better warnings
|
110 |
+
|
111 |
+
if isinstance(data, pd.DataFrame):
|
112 |
+
data.dropna(inplace=True)
|
113 |
+
|
114 |
+
predictions = [
|
115 |
+
ast.literal_eval(prediction) if not isinstance(prediction, list) else prediction
|
116 |
+
for prediction in data["predictions"]
|
117 |
+
]
|
118 |
+
references = [reference for reference in data["references"]]
|
119 |
+
|
120 |
+
results = metric._compute(
|
121 |
+
predictions,
|
122 |
+
references,
|
123 |
+
n_bins=n_bins,
|
124 |
+
scheme=scheme,
|
125 |
+
proxy=proxy,
|
126 |
+
p=p,
|
127 |
+
detail=True,
|
128 |
+
)
|
129 |
+
plot = reliability_plot(results)
|
130 |
+
return results["ECE"], plot
|
131 |
+
|
132 |
+
|
133 |
+
sliders = [
|
134 |
+
gr.Slider(0, 100, value=10, label="n_bins"),
|
135 |
+
gr.Slider(
|
136 |
+
0, 100, value=None, label="bin_range", visible=False
|
137 |
+
), # DEV: need to have a double slider
|
138 |
+
gr.Dropdown(choices=["equal-range", "equal-mass"], value="equal-range", label="scheme"),
|
139 |
+
gr.Dropdown(choices=["upper-edge", "center"], value="upper-edge", label="proxy"),
|
140 |
+
gr.Dropdown(choices=[1, 2, np.inf], value=1, label="p"),
|
141 |
+
]
|
142 |
+
|
143 |
+
slider_defaults = [slider.value for slider in sliders]
|
144 |
+
|
145 |
+
# example data
|
146 |
+
component = gr.inputs.Dataframe(
|
147 |
+
headers=["predictions", "references"], col_count=2, datatype="number", type="pandas"
|
148 |
+
)
|
149 |
+
|
150 |
+
component.value = [
|
151 |
+
[[0.63, 0.2, 0.2], 0],
|
152 |
+
[[0.73, 0.1, 0.2], 2],
|
153 |
+
[[0, 0.95, 0.05], 1],
|
154 |
+
]
|
155 |
+
sample_data = [[component] + slider_defaults]
|
156 |
+
|
157 |
+
local_path = Path(sys.path[0])
|
158 |
+
metric = evaluate.load("jordyvl/ece")
|
159 |
+
outputs = [gr.outputs.Textbox(label="ECE"), gr.Plot(label="Reliability diagram")]
|
160 |
+
# outputs[1].value = default_plot().__dict__ #DEV: Does not work in gradio; needs to be JSON encoded
|
161 |
+
|
162 |
+
|
163 |
+
iface = gr.Interface(
|
164 |
+
fn=compute_and_plot,
|
165 |
+
inputs=[component] + sliders,
|
166 |
+
outputs=outputs,
|
167 |
+
description=metric.info.description,
|
168 |
+
article=evaluate.utils.parse_readme(local_path / "README.md"),
|
169 |
+
title=f"Metric: {metric.name}",
|
170 |
+
# examples=sample_data; #DEV: ValueError: Examples argument must either be a directory or a nested list, where each sublist represents a set of inputs.
|
171 |
+
).launch()
|
local_app.py
CHANGED
@@ -7,7 +7,8 @@ import gradio as gr
|
|
7 |
import numpy as np
|
8 |
import pandas as pd
|
9 |
import ast
|
10 |
-
|
|
|
11 |
|
12 |
|
13 |
import matplotlib.pyplot as plt
|
@@ -55,7 +56,7 @@ sample_data = [[component] + slider_defaults] ##json.dumps(df)
|
|
55 |
|
56 |
local_path = Path(sys.path[0])
|
57 |
metric = evaluate.load("jordyvl/ece")
|
58 |
-
#ECE()
|
59 |
# module = evaluate.load("jordyvl/ece")
|
60 |
# launch_gradio_widget(module)
|
61 |
|
@@ -76,97 +77,80 @@ def default_plot():
|
|
76 |
ls="dotted",
|
77 |
label="Perfect",
|
78 |
)
|
|
|
|
|
79 |
ax1.set_ylabel("Conditional Expectation")
|
80 |
-
ax1.set_ylim([
|
81 |
-
ax1.legend(loc="lower right")
|
82 |
ax1.set_title("Reliability Diagram")
|
|
|
83 |
|
84 |
# Bin frequencies
|
85 |
ax2.set_xlabel("Confidence")
|
86 |
ax2.set_ylabel("Count")
|
87 |
ax2.legend(loc="upper left") # , ncol=2
|
88 |
-
|
89 |
-
return fig
|
90 |
-
|
91 |
|
92 |
-
|
93 |
-
colors = []
|
94 |
-
for j, bin in enumerate(results["y_bar"]):
|
95 |
-
perfect = results["y_bar"][j]
|
96 |
-
empirical = results["p_bar"][j]
|
97 |
-
bin_color = (
|
98 |
-
"limegreen"
|
99 |
-
if perfect == empirical
|
100 |
-
else "dodgerblue"
|
101 |
-
if empirical < perfect
|
102 |
-
else "orangered"
|
103 |
-
)
|
104 |
-
colors.append(bin_color)
|
105 |
-
return colors
|
106 |
|
107 |
|
108 |
def reliability_plot(results):
|
109 |
# DEV: might still need to write tests in case of equal mass binning
|
110 |
-
|
111 |
-
|
112 |
-
ax2 = plt.subplot2grid((3, 1), (2, 0))
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
B, bins, patches = ax1.hist(
|
122 |
-
results["y_bar"],
|
|
|
|
|
123 |
)
|
124 |
colors = over_under_confidence(results)
|
125 |
for b in range(len(B)):
|
126 |
patches[b].set_facecolor(colors[b]) # color based on over/underconfidence
|
127 |
|
128 |
-
ranged = np.linspace(bin_range[0], bin_range[1], n_bins)
|
129 |
-
ax1.plot(
|
130 |
-
ranged,
|
131 |
-
ranged,
|
132 |
-
color="limegreen",
|
133 |
-
ls="dotted",
|
134 |
-
label="Perfect",
|
135 |
-
)
|
136 |
ax1handles = [
|
137 |
mpatches.Patch(color="orangered", label="Overconfident"),
|
138 |
mpatches.Patch(color="limegreen", label="Perfect", linestyle="dotted"),
|
139 |
mpatches.Patch(color="dodgerblue", label="Underconfident"),
|
140 |
]
|
141 |
|
|
|
142 |
anindices = np.where(~np.isnan(results["p_bar"][:-1]))[0]
|
|
|
143 |
bin_freqs = np.zeros(n_bins)
|
144 |
bin_freqs[anindices] = results["bin_freq"]
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
# see: https://github.com/markus93/fit-on-the-test/blob/main/Experiments_Synthetic/binnings.py
|
149 |
|
150 |
acc_plt = ax2.axvline(x=results["accuracy"], ls="solid", lw=3, c="black", label="Accuracy")
|
151 |
conf_plt = ax2.axvline(
|
152 |
x=results["p_bar_cont"], ls="dotted", lw=3, c="#444", label="Avg. confidence"
|
153 |
)
|
154 |
-
ax2.legend(handles=[acc_plt, conf_plt])
|
155 |
|
156 |
-
# Bin differences
|
157 |
-
ax1.set_ylabel("Conditional Expectation")
|
158 |
-
ax1.set_ylim([0, 1.05]) # respective to bin range
|
159 |
ax1.legend(loc="lower right", handles=ax1handles)
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
# Bin frequencies
|
165 |
-
ax2.set_xlabel("Confidence")
|
166 |
-
ax2.set_ylabel("Count")
|
167 |
-
ax2.legend(loc="upper left") # , ncol=2
|
168 |
-
# ax2.set_xticks([0, ]+results["y_bar"])
|
169 |
-
ax2.set_xlim([-0.05, 1.05]) # respective to bin range
|
170 |
plt.tight_layout()
|
171 |
return fig
|
172 |
|
@@ -208,4 +192,4 @@ iface = gr.Interface(
|
|
208 |
article=evaluate.utils.parse_readme(local_path / "README.md"),
|
209 |
title=f"Metric: {metric.name}",
|
210 |
# examples=sample_data; # ValueError: Examples argument must either be a directory or a nested list, where each sublist represents a set of inputs.
|
211 |
-
).launch()
|
|
|
7 |
import numpy as np
|
8 |
import pandas as pd
|
9 |
import ast
|
10 |
+
|
11 |
+
# from ece import ECE # loads local instead
|
12 |
|
13 |
|
14 |
import matplotlib.pyplot as plt
|
|
|
56 |
|
57 |
local_path = Path(sys.path[0])
|
58 |
metric = evaluate.load("jordyvl/ece")
|
59 |
+
# ECE()
|
60 |
# module = evaluate.load("jordyvl/ece")
|
61 |
# launch_gradio_widget(module)
|
62 |
|
|
|
77 |
ls="dotted",
|
78 |
label="Perfect",
|
79 |
)
|
80 |
+
|
81 |
+
# Bin differences
|
82 |
ax1.set_ylabel("Conditional Expectation")
|
83 |
+
ax1.set_ylim([0, 1.05]) # respective to bin range
|
|
|
84 |
ax1.set_title("Reliability Diagram")
|
85 |
+
ax1.set_xlim([-0.05, 1.05]) # respective to bin range
|
86 |
|
87 |
# Bin frequencies
|
88 |
ax2.set_xlabel("Confidence")
|
89 |
ax2.set_ylabel("Count")
|
90 |
ax2.legend(loc="upper left") # , ncol=2
|
91 |
+
ax2.set_xlim([-0.05, 1.05]) # respective to bin range
|
|
|
|
|
92 |
|
93 |
+
return fig, ax1, ax2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
|
96 |
def reliability_plot(results):
|
97 |
# DEV: might still need to write tests in case of equal mass binning
|
98 |
+
# DEV: nicer would be to plot like a polygon
|
99 |
+
# see: https://github.com/markus93/fit-on-the-test/blob/main/Experiments_Synthetic/binnings.py
|
|
|
100 |
|
101 |
+
def over_under_confidence(results):
|
102 |
+
colors = []
|
103 |
+
for j, bin in enumerate(results["y_bar"]):
|
104 |
+
perfect = results["y_bar"][j]
|
105 |
+
empirical = results["p_bar"][j]
|
106 |
+
|
107 |
+
bin_color = (
|
108 |
+
"limegreen"
|
109 |
+
if np.allclose(perfect, empirical)
|
110 |
+
else "dodgerblue"
|
111 |
+
if empirical < perfect
|
112 |
+
else "orangered"
|
113 |
+
)
|
114 |
+
colors.append(bin_color)
|
115 |
+
return colors
|
116 |
+
|
117 |
+
fig, ax1, ax2 = default_plot()
|
118 |
+
|
119 |
+
# Bin differences
|
120 |
+
bins_with_left_edge = np.insert(results["y_bar"], 0, 0, axis=0)
|
121 |
B, bins, patches = ax1.hist(
|
122 |
+
results["y_bar"],
|
123 |
+
weights=np.nan_to_num(results["p_bar"][:-1], copy=True, nan=0),
|
124 |
+
bins=bins_with_left_edge,
|
125 |
)
|
126 |
colors = over_under_confidence(results)
|
127 |
for b in range(len(B)):
|
128 |
patches[b].set_facecolor(colors[b]) # color based on over/underconfidence
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
ax1handles = [
|
131 |
mpatches.Patch(color="orangered", label="Overconfident"),
|
132 |
mpatches.Patch(color="limegreen", label="Perfect", linestyle="dotted"),
|
133 |
mpatches.Patch(color="dodgerblue", label="Underconfident"),
|
134 |
]
|
135 |
|
136 |
+
# Bin frequencies
|
137 |
anindices = np.where(~np.isnan(results["p_bar"][:-1]))[0]
|
138 |
+
n_bins = len(results["y_bar"])
|
139 |
bin_freqs = np.zeros(n_bins)
|
140 |
bin_freqs[anindices] = results["bin_freq"]
|
141 |
+
B, newbins, patches = ax2.hist(
|
142 |
+
results["y_bar"], weights=bin_freqs, color="midnightblue", bins=bins_with_left_edge
|
143 |
+
)
|
|
|
144 |
|
145 |
acc_plt = ax2.axvline(x=results["accuracy"], ls="solid", lw=3, c="black", label="Accuracy")
|
146 |
conf_plt = ax2.axvline(
|
147 |
x=results["p_bar_cont"], ls="dotted", lw=3, c="#444", label="Avg. confidence"
|
148 |
)
|
|
|
149 |
|
|
|
|
|
|
|
150 |
ax1.legend(loc="lower right", handles=ax1handles)
|
151 |
+
ax2.legend(handles=[acc_plt, conf_plt])
|
152 |
+
ax1.set_xticks(bins_with_left_edge)
|
153 |
+
ax2.set_xticks(bins_with_left_edge)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
plt.tight_layout()
|
155 |
return fig
|
156 |
|
|
|
192 |
article=evaluate.utils.parse_readme(local_path / "README.md"),
|
193 |
title=f"Metric: {metric.name}",
|
194 |
# examples=sample_data; # ValueError: Examples argument must either be a directory or a nested list, where each sublist represents a set of inputs.
|
195 |
+
).launch()
|