GLM / app.py
jorgejungle's picture
Update app.py
2010eca verified
raw
history blame
11.4 kB
import os
import shlex
import subprocess
import tyro
import imageio
import numpy as np
import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from safetensors.torch import load_file
import rembg
import gradio as gr
# download checkpoints
from huggingface_hub import hf_hub_download
ckpt_path = hf_hub_download(repo_id="ashawkey/LGM", filename="model_fp16.safetensors")
# subprocess.run(shlex.split("pip install wheel/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl"))
import kiui
from kiui.op import recenter
from kiui.cam import orbit_camera
from core.options import AllConfigs, Options, config_defaults
from core.models import LGM
from convert import Converter
from mvdream.pipeline_mvdream import MVDreamPipeline
# import spaces
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
GRADIO_VIDEO_PATH = 'gradio_output.mp4'
GRADIO_PLY_PATH = 'gradio_output.ply'
GRADIO_GLB_PATH = 'gradio_output.glb'
# opt = tyro.cli(AllConfigs)
opt = Options(
input_size=256,
up_channels=(1024, 1024, 512, 256, 128), # one more decoder
up_attention=(True, True, True, False, False),
splat_size=128,
output_size=512, # render & supervise Gaussians at a higher resolution.
batch_size=8,
num_views=8,
gradient_accumulation_steps=1,
mixed_precision='bf16',
resume=ckpt_path,
)
# model
model = LGM(opt)
# resume pretrained checkpoint
if opt.resume is not None:
if opt.resume.endswith('safetensors'):
ckpt = load_file(opt.resume, device='cpu')
else:
ckpt = torch.load(opt.resume, map_location='cpu')
model.load_state_dict(ckpt, strict=False)
print(f'[INFO] Loaded checkpoint from {opt.resume}')
else:
print(f'[WARN] model randomly initialized, are you sure?')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.half().to(device)
model.eval()
tan_half_fov = np.tan(0.5 * np.deg2rad(opt.fovy))
proj_matrix = torch.zeros(4, 4, dtype=torch.float32).to(device)
proj_matrix[0, 0] = 1 / tan_half_fov
proj_matrix[1, 1] = 1 / tan_half_fov
proj_matrix[2, 2] = (opt.zfar + opt.znear) / (opt.zfar - opt.znear)
proj_matrix[3, 2] = - (opt.zfar * opt.znear) / (opt.zfar - opt.znear)
proj_matrix[2, 3] = 1
# load dreams
pipe_text = MVDreamPipeline.from_pretrained(
'ashawkey/mvdream-sd2.1-diffusers', # remote weights
torch_dtype=torch.float16,
trust_remote_code=True,
# local_files_only=True,
)
pipe_text = pipe_text.to(device)
pipe_image = MVDreamPipeline.from_pretrained(
"ashawkey/imagedream-ipmv-diffusers", # remote weights
torch_dtype=torch.float16,
trust_remote_code=True,
# local_files_only=True,
)
pipe_image = pipe_image.to(device)
# load rembg
bg_remover = rembg.new_session()
# process function
# @spaces.GPU
def process(input_image, prompt, prompt_neg='', input_elevation=0, input_num_steps=30, input_seed=42):
# seed
kiui.seed_everything(input_seed)
os.makedirs(opt.workspace, exist_ok=True)
output_video_path = os.path.join(opt.workspace, GRADIO_VIDEO_PATH)
output_ply_path = os.path.join(opt.workspace, GRADIO_PLY_PATH)
output_glb_path = os.path.join(opt.workspace, GRADIO_GLB_PATH)
# text-conditioned
if input_image is None:
mv_image_uint8 = pipe_text(prompt, negative_prompt=prompt_neg, num_inference_steps=input_num_steps, guidance_scale=7.5, elevation=input_elevation)
mv_image_uint8 = (mv_image_uint8 * 255).astype(np.uint8)
# bg removal
mv_image = []
for i in range(4):
image = rembg.remove(mv_image_uint8[i], session=bg_remover) # [H, W, 4]
# to white bg
image = image.astype(np.float32) / 255
image = recenter(image, image[..., 0] > 0, border_ratio=0.2)
image = image[..., :3] * image[..., -1:] + (1 - image[..., -1:])
mv_image.append(image)
# image-conditioned (may also input text, but no text usually works too)
else:
input_image = np.array(input_image) # uint8
# bg removal
carved_image = rembg.remove(input_image, session=bg_remover) # [H, W, 4]
mask = carved_image[..., -1] > 0
image = recenter(carved_image, mask, border_ratio=0.2)
image = image.astype(np.float32) / 255.0
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
mv_image = pipe_image(prompt, image, negative_prompt=prompt_neg, num_inference_steps=input_num_steps, guidance_scale=5.0, elevation=input_elevation)
mv_image_grid = np.concatenate([
np.concatenate([mv_image[1], mv_image[2]], axis=1),
np.concatenate([mv_image[3], mv_image[0]], axis=1),
], axis=0)
# generate gaussians
input_image = np.stack([mv_image[1], mv_image[2], mv_image[3], mv_image[0]], axis=0) # [4, 256, 256, 3], float32
input_image = torch.from_numpy(input_image).permute(0, 3, 1, 2).float().to(device) # [4, 3, 256, 256]
input_image = F.interpolate(input_image, size=(opt.input_size, opt.input_size), mode='bilinear', align_corners=False)
input_image = TF.normalize(input_image, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
rays_embeddings = model.prepare_default_rays(device, elevation=input_elevation)
input_image = torch.cat([input_image, rays_embeddings], dim=1).unsqueeze(0) # [1, 4, 9, H, W]
with torch.no_grad():
with torch.autocast(device_type='cuda', dtype=torch.float16):
# generate gaussians
gaussians = model.forward_gaussians(input_image)
# save gaussians
model.gs.save_ply(gaussians, output_ply_path)
# render 360 video
images = []
elevation = 0
if opt.fancy_video:
azimuth = np.arange(0, 720, 4, dtype=np.int32)
for azi in tqdm.tqdm(azimuth):
cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
# cameras needed by gaussian rasterizer
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
scale = min(azi / 360, 1)
image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=scale)['image']
images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))
else:
azimuth = np.arange(0, 360, 2, dtype=np.int32)
for azi in tqdm.tqdm(azimuth):
cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
# cameras needed by gaussian rasterizer
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=1)['image']
images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))
images = np.concatenate(images, axis=0)
imageio.mimwrite(output_video_path, images, fps=30)
# load a saved ply and convert to mesh
opt.test_path = output_ply_path
converter = Converter(opt).cuda()
converter.fit_nerf()
converter.fit_mesh()
converter.fit_mesh_uv()
converter.export_mesh(opt.test_path.replace('.ply', '.glb'))
return mv_image_grid, output_video_path, output_glb_path
# gradio UI
_TITLE = '''LGM: Large Multi-View Gaussian Model for High-Resolution 3D Content Creation'''
_DESCRIPTION = '''
<div>
<a style="display:inline-block" href="https://me.kiui.moe/lgm/"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a>
<a style="display:inline-block; margin-left: .5em" href="https://github.com/3DTopia/LGM"><img src='https://img.shields.io/github/stars/3DTopia/LGM?style=social'/></a>
</div>
* Input can be only text, only image, or both image and text.
* Output is a `ply` file containing the 3D Gaussians, please check our [repo](https://github.com/3DTopia/LGM/blob/main/readme.md) for visualization and mesh conversion.
* If you find the output unsatisfying, try using different seeds!
'''
block = gr.Blocks(title=_TITLE).queue()
with block:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + _TITLE)
gr.Markdown(_DESCRIPTION)
with gr.Row(variant='panel'):
with gr.Column(scale=1):
# input image
input_image = gr.Image(label="image", type='pil')
# input prompt
input_text = gr.Textbox(label="prompt")
# negative prompt
input_neg_text = gr.Textbox(label="negative prompt", value='ugly, blurry, pixelated obscure, unnatural colors, poor lighting, dull, unclear, cropped, lowres, low quality, artifacts, duplicate')
# elevation
input_elevation = gr.Slider(label="elevation", minimum=-90, maximum=90, step=1, value=0)
# inference steps
input_num_steps = gr.Slider(label="inference steps", minimum=1, maximum=100, step=1, value=30)
# random seed
input_seed = gr.Slider(label="random seed", minimum=0, maximum=100000, step=1, value=0)
# gen button
button_gen = gr.Button("Generate")
with gr.Column(scale=1):
with gr.Tab("Video"):
# final video results
output_video = gr.Video(label="video")
# ply file
output_file = gr.File(label="3D Gaussians (ply format)")
with gr.Tab("Multi-view Image"):
# multi-view results
output_image = gr.Image(interactive=False, show_label=False)
button_gen.click(process, inputs=[input_image, input_text, input_neg_text, input_elevation, input_num_steps, input_seed], outputs=[output_image, output_video, output_file])
gr.Examples(
examples=[
"data_test/frog_sweater.jpg",
"data_test/bird.jpg",
"data_test/boy.jpg",
"data_test/cat_statue.jpg",
"data_test/dragontoy.jpg",
"data_test/gso_rabbit.jpg",
],
inputs=[input_image],
outputs=[output_image, output_video, output_file],
fn=lambda x: process(input_image=x, prompt=''),
cache_examples=True,
label='Image-to-3D Examples'
)
gr.Examples(
examples=[
"teddy bear",
"hamburger",
"oldman's head sculpture",
"headphone",
"motorbike",
"mech suit"
],
inputs=[input_text],
outputs=[output_image, output_video, output_file],
fn=lambda x: process(input_image=None, prompt=x),
cache_examples=True,
label='Text-to-3D Examples'
)
block.launch()