GLM / app.py
jorgejungle's picture
Update app.py
29a0098 verified
import os
import shlex
import subprocess
import tyro
import imageio
import numpy as np
import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from safetensors.torch import load_file
import rembg
import gradio as gr
# download checkpoints
from huggingface_hub import hf_hub_download
ckpt_path = hf_hub_download(repo_id="ashawkey/LGM", filename="model_fp16.safetensors")
subprocess.run(shlex.split("pip install wheel/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl"))
import kiui
from kiui.op import recenter
from kiui.cam import orbit_camera
from core.options import AllConfigs, Options, config_defaults
from core.models import LGM
from convert import Converter
from mvdream.pipeline_mvdream import MVDreamPipeline
# import spaces
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
GRADIO_VIDEO_PATH = 'gradio_output.mp4'
GRADIO_PLY_PATH = 'gradio_output.ply'
GRADIO_GLB_PATH = 'gradio_output.glb'
# opt = tyro.cli(AllConfigs)
opt = Options(
input_size=256,
up_channels=(1024, 1024, 512, 256, 128), # one more decoder
up_attention=(True, True, True, False, False),
splat_size=128,
output_size=512, # render & supervise Gaussians at a higher resolution.
batch_size=8,
num_views=8,
gradient_accumulation_steps=1,
mixed_precision='bf16',
resume=ckpt_path,
)
# model
model = LGM(opt)
# resume pretrained checkpoint
if opt.resume is not None:
if opt.resume.endswith('safetensors'):
ckpt = load_file(opt.resume, device='cpu')
else:
ckpt = torch.load(opt.resume, map_location='cpu')
model.load_state_dict(ckpt, strict=False)
print(f'[INFO] Loaded checkpoint from {opt.resume}')
else:
print(f'[WARN] model randomly initialized, are you sure?')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.half().to(device)
model.eval()
tan_half_fov = np.tan(0.5 * np.deg2rad(opt.fovy))
proj_matrix = torch.zeros(4, 4, dtype=torch.float32).to(device)
proj_matrix[0, 0] = 1 / tan_half_fov
proj_matrix[1, 1] = 1 / tan_half_fov
proj_matrix[2, 2] = (opt.zfar + opt.znear) / (opt.zfar - opt.znear)
proj_matrix[3, 2] = - (opt.zfar * opt.znear) / (opt.zfar - opt.znear)
proj_matrix[2, 3] = 1
# load dreams
pipe_text = MVDreamPipeline.from_pretrained(
'ashawkey/mvdream-sd2.1-diffusers', # remote weights
torch_dtype=torch.float16,
trust_remote_code=True,
# local_files_only=True,
)
pipe_text = pipe_text.to(device)
pipe_image = MVDreamPipeline.from_pretrained(
"ashawkey/imagedream-ipmv-diffusers", # remote weights
torch_dtype=torch.float16,
trust_remote_code=True,
# local_files_only=True,
)
pipe_image = pipe_image.to(device)
# load rembg
bg_remover = rembg.new_session()
# process function
# @spaces.GPU
def generate(input_image, prompt, prompt_neg='', input_elevation=0, input_num_steps=30, input_seed=42):
# seed
kiui.seed_everything(input_seed)
os.makedirs(opt.workspace, exist_ok=True)
output_video_path = os.path.join(opt.workspace, GRADIO_VIDEO_PATH)
output_ply_path = os.path.join(opt.workspace, GRADIO_PLY_PATH)
output_glb_path = os.path.join(opt.workspace, GRADIO_GLB_PATH)
# text-conditioned
if input_image is None:
mv_image_uint8 = pipe_text(prompt, negative_prompt=prompt_neg, num_inference_steps=input_num_steps, guidance_scale=7.5, elevation=input_elevation)
mv_image_uint8 = (mv_image_uint8 * 255).astype(np.uint8)
# bg removal
mv_image = []
for i in range(4):
image = rembg.remove(mv_image_uint8[i], session=bg_remover) # [H, W, 4]
# to white bg
image = image.astype(np.float32) / 255
image = recenter(image, image[..., 0] > 0, border_ratio=0.2)
image = image[..., :3] * image[..., -1:] + (1 - image[..., -1:])
mv_image.append(image)
# image-conditioned (may also input text, but no text usually works too)
else:
input_image = np.array(input_image) # uint8
# bg removal
carved_image = rembg.remove(input_image, session=bg_remover) # [H, W, 4]
mask = carved_image[..., -1] > 0
image = recenter(carved_image, mask, border_ratio=0.2)
image = image.astype(np.float32) / 255.0
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
mv_image = pipe_image(prompt, image, negative_prompt=prompt_neg, num_inference_steps=input_num_steps, guidance_scale=5.0, elevation=input_elevation)
mv_image_grid = np.concatenate([
np.concatenate([mv_image[1], mv_image[2]], axis=1),
np.concatenate([mv_image[3], mv_image[0]], axis=1),
], axis=0)
# generate gaussians
input_image = np.stack([mv_image[1], mv_image[2], mv_image[3], mv_image[0]], axis=0) # [4, 256, 256, 3], float32
input_image = torch.from_numpy(input_image).permute(0, 3, 1, 2).float().to(device) # [4, 3, 256, 256]
input_image = F.interpolate(input_image, size=(opt.input_size, opt.input_size), mode='bilinear', align_corners=False)
input_image = TF.normalize(input_image, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
rays_embeddings = model.prepare_default_rays(device, elevation=input_elevation)
input_image = torch.cat([input_image, rays_embeddings], dim=1).unsqueeze(0) # [1, 4, 9, H, W]
with torch.no_grad():
with torch.autocast(device_type='cuda', dtype=torch.float16):
# generate gaussians
gaussians = model.forward_gaussians(input_image)
# save gaussians
model.gs.save_ply(gaussians, output_ply_path)
# render 360 video
images = []
elevation = 0
if opt.fancy_video:
azimuth = np.arange(0, 720, 4, dtype=np.int32)
for azi in tqdm.tqdm(azimuth):
cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
# cameras needed by gaussian rasterizer
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
scale = min(azi / 360, 1)
image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=scale)['image']
images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))
else:
azimuth = np.arange(0, 360, 2, dtype=np.int32)
for azi in tqdm.tqdm(azimuth):
cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
# cameras needed by gaussian rasterizer
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=1)['image']
images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))
images = np.concatenate(images, axis=0)
imageio.mimwrite(output_video_path, images, fps=30)
return mv_image_grid, output_video_path, output_ply_path
def convert(output_ply_path):
if not os.path.exists(output_ply_path):
gr.Warning("PLY file not found please upload or generate 3D model")
# load a saved ply and convert to mesh
opt.test_path = output_ply_path
opt.force_cuda_rast = True # container compatability
converter = Converter(opt).cuda()
converter.fit_nerf()
converter.fit_mesh()
converter.fit_mesh_uv()
converter.export_mesh(opt.test_path.replace('.ply', '.glb'))
return output_glb_path
# gradio UI
_TITLE = '''LGM: Large Multi-View Gaussian Model for High-Resolution 3D Content Creation'''
_DESCRIPTION = '''
<div>
<a style="display:inline-block" href="https://me.kiui.moe/lgm/"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a>
<a style="display:inline-block; margin-left: .5em" href="https://github.com/3DTopia/LGM"><img src='https://img.shields.io/github/stars/3DTopia/LGM?style=social'/></a>
</div>
* Input can be only text, only image, or both image and text.
* Output is a `ply` file containing the 3D Gaussians, please check our [repo](https://github.com/3DTopia/LGM/blob/main/readme.md) for visualization and mesh conversion.
* If you find the output unsatisfying, try using different seeds!
'''
block = gr.Blocks(title=_TITLE).queue()
with block:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + _TITLE)
gr.Markdown(_DESCRIPTION)
with gr.Row(variant='panel'):
with gr.Column(scale=1):
# input image
input_image = gr.Image(label="image", type='pil')
# input prompt
input_text = gr.Textbox(label="prompt")
# negative prompt
input_neg_text = gr.Textbox(label="negative prompt", value='ugly, blurry, pixelated obscure, unnatural colors, poor lighting, dull, unclear, cropped, lowres, low quality, artifacts, duplicate')
# elevation
input_elevation = gr.Slider(label="elevation", minimum=-90, maximum=90, step=1, value=0)
# inference steps
input_num_steps = gr.Slider(label="inference steps", minimum=1, maximum=100, step=1, value=30)
# random seed
input_seed = gr.Slider(label="random seed", minimum=0, maximum=100000, step=1, value=0)
# gen button
button_gen = gr.Button("Generate")
with gr.Column(scale=1):
with gr.Tab("Video and 3D Model"):
# final video results
output_video = gr.Video(label="video")
# ply file
output_file = gr.Model3D(label="3D Gaussians (ply format)")
gr.Markdown("Note: Downloaded object will be flipped in case of .ply export. Export .glb instead or manually flip it before usage.")
with gr.Tab("Multi-view Image"):
# multi-view results
output_image = gr.Image(interactive=False, show_label=False)
with gr.Tab("Convert Format"):
# multi-view results
output_glb = gr.Model3D(label="3D Mesh (glb format)")
gr.Markdown("Note: The model shown here has a darker appearance. Download to get correct results.")
button_con = gr.Button("Convert to Mesh")
button_gen.click(generate, inputs=[input_image, input_text, input_neg_text, input_elevation, input_num_steps, input_seed], outputs=[output_image, output_video, output_file])
button_con.click(convert, inputs=output_file, outputs=output_glb)
gr.Examples(
examples=[
"data_test/frog_sweater.jpg",
"data_test/bird.jpg",
"data_test/boy.jpg",
"data_test/cat_statue.jpg",
"data_test/dragontoy.jpg",
"data_test/gso_rabbit.jpg",
],
inputs=[input_image],
outputs=[output_image, output_video, output_file],
fn=lambda x: generate(input_image=x, prompt=''),
cache_examples=True,
label='Image-to-3D Examples'
)
gr.Examples(
examples=[
"teddy bear",
"hamburger",
"oldman's head sculpture",
"headphone",
"motorbike",
"mech suit"
],
inputs=[input_text],
outputs=[output_image, output_video, output_file],
fn=lambda x: generate(input_image=None, prompt=x),
cache_examples=True,
label='Text-to-3D Examples'
)
block.launch()