|
import gradio as gr |
|
from huggingface_hub import hf_hub_download |
|
from ultralytics import YOLO |
|
from supervision import Detections |
|
from PIL import Image |
|
import cv2 |
|
model_path = hf_hub_download(repo_id="arnabdhar/YOLOv8-Face-Detection", filename="model.pt") |
|
model = YOLO(model_path) |
|
|
|
|
|
def greet(img): |
|
output = model(img) |
|
results = Detections.from_ultralytics(output[0]) |
|
arr_int = results.xyxy.astype(int) |
|
|
|
for x, y, x2, y2 in arr_int: |
|
cv2.rectangle(img, (x, y), (x2, y2), (0, 255, 0), 2) |
|
return img |
|
|
|
demo = gr.Interface(fn=greet, inputs="image", outputs="image") |
|
|
|
if __name__ == "__main__": |
|
demo.launch(show_api=False, share=True) |
|
|