File size: 1,513 Bytes
9d9118e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1386b5a
9d9118e
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import gradio as gr
import torch
from transformers import pipeline

username = "jpbello"  ## Complete your username
model_id = f"{username}/distilhubert-finetuned-gtzan"
device = "cuda:0" if torch.cuda.is_available() else "cpu"
pipe = pipeline("audio-classification", model=model_id, device=device)

# def predict_trunc(filepath):
#     preprocessed = pipe.preprocess(filepath)
#     truncated = pipe.feature_extractor.pad(preprocessed,truncation=True, max_length = 16_000*30)
#     model_outputs = pipe.forward(truncated)
#     outputs = pipe.postprocess(model_outputs)

#     return outputs


def classify_audio(filepath):
    """
      Goes from
      [{'score': 0.8339303731918335, 'label': 'country'},
    {'score': 0.11914275586605072, 'label': 'rock'},]
     to
     {"country":  0.8339303731918335, "rock":0.11914275586605072}
    """
    preds = pipe(filepath)
    # preds = predict_trunc(filepath)
    outputs = {}
    for p in preds:
        outputs[p["label"]] = p["score"]
    return outputs


title = "🎵 Music Genre Classifier"
description = """
demo to showcase the music
classification model that we just trained on the [GTZAN](https://huggingface.co/datasets/marsyas/gtzan)
"""

filenames = ['cut_hk.mp3', "cut_hm.mp3", "cut_mc.mp3", "cut_rdr.mp3"]
filenames = [[f"./{f}"] for f in filenames]
demo = gr.Interface(
    fn=classify_audio,
    inputs=gr.Audio(type="filepath"),
    outputs=gr.outputs.Label(),
    title=title,
    description=description,
    examples=filenames,
)
demo.launch()