Spaces:
Runtime error
Runtime error
import gradio as gr | |
import openai | |
from t2a import text_to_audio | |
import joblib | |
from sentence_transformers import SentenceTransformer | |
import numpy as np | |
reg = joblib.load('text_reg.joblib') | |
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') | |
finetune = "davinci:ft-personal:autodrummer-v4-2022-11-01-22-44-58" | |
def get_note_text(prompt): | |
prompt = prompt + " ->" | |
# get completion from finetune | |
response = openai.Completion.create( | |
engine=finetune, | |
prompt=prompt, | |
temperature=0.7, | |
max_tokens=100, | |
top_p=1, | |
frequency_penalty=0, | |
presence_penalty=0, | |
stop=["###"] | |
) | |
return response.choices[0].text.strip() | |
def get_drummer_output(prompt, openai_api_key): | |
openai.api_key = openai_api_key | |
note_text = get_note_text(prompt) | |
# note_text = note_text + " " + note_text | |
# note_text = "k n k n k n k n s n h n k n s n k n k n k n k n k n k n h n k n n" | |
prompt_enc = model.encode([prompt]) | |
bpm = int(reg.predict(prompt_enc)[0]) + 20 | |
print(bpm, "bpm", "notes are", note_text) | |
audio = text_to_audio(note_text, bpm) | |
# audio to numpy | |
audio = np.array(audio.get_array_of_samples(), dtype=np.float32) | |
return (96000, audio) | |
iface = gr.Interface(fn=get_drummer_output, inputs=["text", "text"], outputs="audio") | |
iface.launch() |