import gradio as gr import openai from t2a import text_to_audio import joblib from sentence_transformers import SentenceTransformer import numpy as np import os reg = joblib.load('text_reg.joblib') model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') finetune = "davinci:ft-personal:autodrummer-v5-2022-11-04-22-34-07" def get_note_text(prompt): prompt = prompt + " ->" # get completion from finetune response = openai.Completion.create( engine=finetune, prompt=prompt, temperature=0.5, max_tokens=200, top_p=1, frequency_penalty=0, presence_penalty=0, stop=["###"] ) return response.choices[0].text.strip() def get_drummer_output(prompt): openai.api_key = os.environ['key'] note_text = get_note_text(prompt) # note_text = note_text + " " + note_text prompt_enc = model.encode([prompt]) bpm = int(reg.predict(prompt_enc)[0]) + 20 print(bpm, "bpm", "notes are", note_text) audio = text_to_audio(note_text, bpm) audio = np.array(audio.get_array_of_samples(), dtype=np.float32) return (96000, audio) iface = gr.Interface( fn=get_drummer_output, inputs="text", examples=[ "hiphop groove 808", "rock metal", "disco funk", ], outputs="audio", title='Autodrummer', description="Stable Diffusion for drum beats. Type in a genre and some descriptors (e.g., 'hiphop groove 808') to the prompt box and get a drum beat in that genre" ) iface.launch()