|
import datetime |
|
import os |
|
from langchain.chains import VectorDBQAWithSourcesChain |
|
import gradio as gr |
|
import langchain |
|
import weaviate |
|
from langchain.vectorstores import Weaviate |
|
import faiss |
|
import pickle |
|
from langchain import OpenAI |
|
from arxiv import get_paper |
|
from ingest_faiss import create_vector_store |
|
|
|
def get_vectorstore(suffix): |
|
index = faiss.read_index(f"{suffix}/docs.index") |
|
with open(f"{suffix}/faiss_store.pkl", "rb") as f: |
|
store = pickle.load(f) |
|
store.index = index |
|
return store |
|
|
|
def set_openai_api_key(api_key, agent): |
|
if api_key: |
|
os.environ["OPENAI_API_KEY"] = api_key |
|
vectorstore = get_vectorstore() |
|
qa_chain = VectorDBQAWithSourcesChain.from_llm(llm=OpenAI(temperature=0), vectorstore=vectorstore) |
|
os.environ["OPENAI_API_KEY"] = "" |
|
return qa_chain |
|
|
|
def download_paper_and_embed(paper_arxiv_url, api_key): |
|
if paper_arxiv_url and api_key: |
|
paper_text = get_paper(paper_arxiv_url) |
|
if 'abs' in paper_arxiv_url: |
|
eprint_url = paper_arxiv_url.replace("https://arxiv.org/abs/", "https://arxiv.org/e-print/") |
|
elif 'pdf' in paper_arxiv_url: |
|
eprint_url = paper_arxiv_url.replace("https://arxiv.org/pdf/", "https://arxiv.org/e-print/") |
|
else: |
|
raise ValueError("Invalid arXiv URL") |
|
suffix = 'paper-dir/' + eprint_url.replace("https://arxiv.org/e-print/", "") |
|
if not os.path.exists(suffix + "/docs.index"): |
|
create_vector_store(suffix, paper_text) |
|
|
|
os.environ["OPENAI_API_KEY"] = api_key |
|
vectorstore = get_vectorstore(suffix) |
|
qa_chain = VectorDBQAWithSourcesChain.from_llm(llm=OpenAI(temperature=0), vectorstore=vectorstore) |
|
os.environ["OPENAI_API_KEY"] = "" |
|
return qa_chain |
|
|
|
chain = None |
|
|
|
def chat(inp, history, paper_arxiv_url, api_key, agent): |
|
global chain |
|
if history is None: |
|
chain = download_paper_and_embed(paper_arxiv_url, api_key) |
|
history = history or [] |
|
|
|
|
|
|
|
print("\n==== date/time: " + str(datetime.datetime.now()) + " ====") |
|
print("inp: " + inp) |
|
history = history or [] |
|
agent = chain |
|
output = agent({"question": inp}) |
|
answer = output["answer"] |
|
sources = output["sources"] |
|
history.append((inp, answer)) |
|
history.append(("Sources?", sources)) |
|
print(history) |
|
return history, history |
|
|
|
block = gr.Blocks(css=".gradio-container {background-color: lightgray}") |
|
|
|
with block: |
|
state = gr.State() |
|
agent_state = gr.State() |
|
with gr.Row(): |
|
gr.Markdown("<h3><center>PaperChat</center></h3>") |
|
|
|
paper_arxiv_url = gr.Textbox( |
|
placeholder="Paste the URL of the paper about which you want to ask a question", |
|
show_label=False, |
|
lines=1, |
|
type="url", |
|
) |
|
|
|
openai_api_key_textbox = gr.Textbox( |
|
placeholder="Paste your OpenAI API key (sk-...)", |
|
show_label=False, |
|
lines=1, |
|
type="password", |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
chatbot = gr.Chatbot() |
|
|
|
with gr.Row(): |
|
message = gr.Textbox( |
|
label="What's your question?", |
|
placeholder="What's the answer to life, the universe, and everything?", |
|
lines=1, |
|
) |
|
submit = gr.Button(value="Send", variant="secondary").style(full_width=False) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gr.HTML( |
|
"""This app demonstrates question-answering on any given arxiv paper""" |
|
) |
|
|
|
gr.HTML( |
|
"<center>Powered by <a href='https://github.com/hwchase17/langchain'>LangChain 🦜️🔗</a></center>" |
|
) |
|
|
|
submit.click(chat, inputs=[message, state, paper_arxiv_url, openai_api_key_textbox, agent_state], outputs=[chatbot, state]) |
|
message.submit(chat, inputs=[message, state, paper_arxiv_url, openai_api_key_textbox, agent_state], outputs=[chatbot, state]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
block.launch(debug=True) |
|
|