import json import gradio as gr import pandas as pd from css_html import custom_css from text_content import ABOUT_TEXT, CITATION_BUTTON_TEXT, CITATION_BUTTON_LABEL, ACKNOWLEDGEMENT_TEXT, NOTES_TEXT from utils import ( AutoEvalColumn, fields, ) result_path = './RESULTS.json' with open(result_path, 'r') as f: data = json.load(f) rows = [] for col, subcols in data.items(): row = {"model": col} for subcol, datas in subcols.items(): if subcol == 'readability': symbol = 'π' elif subcol == 'maintainability': symbol = 'π¨' elif subcol == 'efficiency': symbol = 'π' elif subcol == 'correctness': symbol = 'β ' elif subcol == 'overall': symbol = 'π―' for key, value in datas.items(): row[f'{symbol} {key}'] = value rows.append(row) df = pd.DataFrame(rows) df = df.sort_values(by='π― RACE Score', ascending=False) COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden] COLS_LITE = [ c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden ] TYPES_LITE = [ c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden ] def select_columns(df, columns): always_here_cols = [ AutoEvalColumn.model.name, ] # We use COLS to maintain sorting filtered_df = df[ always_here_cols + [c for c in COLS if c in df.columns and c in columns] ] return filtered_df demo = gr.Blocks(css=custom_css) with demo: with gr.Row(): gr.Markdown( """
Based on the ποΈRACE benchmark, we demonstrated the ability of different LLMs to generate code that is correct and meets the requirements of real-world development scenarios.
More details about how to evalute the LLM are available in the ποΈRACE GitHub repository.
""", elem_classes="markdown-text", ) with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.Column(): with gr.Tabs(elem_classes="A100-tabs") as A100_tabs: with gr.TabItem("π Evaluation Table", id=0): with gr.Column(): with gr.Accordion("β¬ Hidden Columns", open=False): shown_columns = gr.CheckboxGroup( choices=[ c for c in COLS if c not in [ AutoEvalColumn.model.name, ] ], value=[ c for c in COLS_LITE if c not in [ AutoEvalColumn.model.name, ] ], label="", elem_id="column-select", interactive=True, ) leaderboard_df = gr.components.Dataframe( value=df[ [ AutoEvalColumn.model.name, ] + shown_columns.value ], headers=COLS, datatype=TYPES, elem_id="leaderboard-table", interactive=False, ) hidden_leaderboard_df = gr.components.Dataframe( value=df, headers=COLS, datatype=["str" for _ in range(len(COLS))], visible=False, ) shown_columns.change( select_columns, [hidden_leaderboard_df, shown_columns], leaderboard_df, ) gr.Markdown(NOTES_TEXT, elem_classes="markdown-text") with gr.TabItem("π About", id=1): gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text") with gr.Row(): with gr.Accordion("π Citation", open=False): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=10, elem_id="citation-button", show_copy_button=True, ) with gr.Row(): with gr.Accordion("π Acknowledgement", open=False): gr.Markdown(ACKNOWLEDGEMENT_TEXT) demo.launch()