Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
class Generator(nn.Module): | |
def __init__(self, c_dim): | |
super(Generator, self).__init__() | |
self.g = nn.Sequential( | |
#-------Down-sampling-------------------- | |
nn.Conv2d(3+c_dim, 64, kernel_size=7, stride=1, padding=3, bias=False), | |
nn.InstanceNorm2d(64, affine=True, track_running_stats=True), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1, bias=False), | |
nn.InstanceNorm2d(128, affine=True, track_running_stats=True), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1, bias=False), | |
nn.InstanceNorm2d(256, affine=True, track_running_stats=True), | |
nn.ReLU(inplace=True), | |
#--------Bottleneck--------------------------- | |
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False), | |
nn.InstanceNorm2d(256, affine=True, track_running_stats=True), | |
nn.ReLU(inplace=True), | |
# (так 6 раз) | |
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False), | |
nn.InstanceNorm2d(256, affine=True, track_running_stats=True), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False), | |
nn.InstanceNorm2d(256, affine=True, track_running_stats=True), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False), | |
nn.InstanceNorm2d(256, affine=True, track_running_stats=True), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False), | |
nn.InstanceNorm2d(256, affine=True, track_running_stats=True), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False), | |
nn.InstanceNorm2d(256, affine=True, track_running_stats=True), | |
nn.ReLU(inplace=True), | |
#-------Up-sampling----------------------------- | |
nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1, bias=False), | |
nn.InstanceNorm2d(128, affine=True, track_running_stats=True), | |
nn.ReLU(inplace=True), | |
nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1, bias=False), | |
nn.InstanceNorm2d(64, affine=True, track_running_stats=True), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(64, 3, kernel_size=7, stride=1, padding=3, bias=False), | |
nn.Tanh() | |
) | |
def forward(self, x, c): | |
# labels = self.label_embedding(labels).view(-1, 1, self.config.noise_shape, self.config.noise_shape) | |
c = c.view(c.size(0), c.size(1), 1, 1) | |
c = c.repeat(1, 1, x.size(2), x.size(3)) | |
x = torch.cat([x, c], dim=1) | |
# print(f"size = {x.size()}") | |
return self.g(x) | |
class Discriminator(nn.Module): | |
def __init__(self): | |
super(Discriminator, self).__init__() | |
self.d = nn.Sequential( | |
nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1), | |
nn.LeakyReLU(0.01), | |
nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1), | |
nn.LeakyReLU(0.01), | |
nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1), | |
nn.LeakyReLU(0.01), | |
nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1), | |
nn.LeakyReLU(0.01), | |
nn.Conv2d(512, 1024, kernel_size=4, stride=2, padding=1), | |
nn.LeakyReLU(0.01), | |
nn.Conv2d(1024, 2048, kernel_size=4, stride=2, padding=1), | |
nn.LeakyReLU(0.01) | |
) | |
self.conv1 = nn.Conv2d(2048, 1, kernel_size=3, stride=1, padding=1, bias=False) | |
self.conv2 = nn.Conv2d(2048, 2, kernel_size=4, bias=False) | |
def forward(self, x): | |
h = self.d(x) | |
out_src = self.conv1(h) | |
out_cls = self.conv2(h) | |
# print(out_cls.size()) | |
return out_src, out_cls.view(out_cls.size(0), out_cls.size(1)) | |