import torch import torch.nn as nn class Generator(nn.Module): def __init__(self, c_dim): super(Generator, self).__init__() self.g = nn.Sequential( #-------Down-sampling-------------------- nn.Conv2d(3+c_dim, 64, kernel_size=7, stride=1, padding=3, bias=False), nn.InstanceNorm2d(64, affine=True, track_running_stats=True), nn.ReLU(inplace=True), nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1, bias=False), nn.InstanceNorm2d(128, affine=True, track_running_stats=True), nn.ReLU(inplace=True), nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1, bias=False), nn.InstanceNorm2d(256, affine=True, track_running_stats=True), nn.ReLU(inplace=True), #--------Bottleneck--------------------------- nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False), nn.InstanceNorm2d(256, affine=True, track_running_stats=True), nn.ReLU(inplace=True), # (так 6 раз) nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False), nn.InstanceNorm2d(256, affine=True, track_running_stats=True), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False), nn.InstanceNorm2d(256, affine=True, track_running_stats=True), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False), nn.InstanceNorm2d(256, affine=True, track_running_stats=True), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False), nn.InstanceNorm2d(256, affine=True, track_running_stats=True), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False), nn.InstanceNorm2d(256, affine=True, track_running_stats=True), nn.ReLU(inplace=True), #-------Up-sampling----------------------------- nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1, bias=False), nn.InstanceNorm2d(128, affine=True, track_running_stats=True), nn.ReLU(inplace=True), nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1, bias=False), nn.InstanceNorm2d(64, affine=True, track_running_stats=True), nn.ReLU(inplace=True), nn.Conv2d(64, 3, kernel_size=7, stride=1, padding=3, bias=False), nn.Tanh() ) def forward(self, x, c): # labels = self.label_embedding(labels).view(-1, 1, self.config.noise_shape, self.config.noise_shape) c = c.view(c.size(0), c.size(1), 1, 1) c = c.repeat(1, 1, x.size(2), x.size(3)) x = torch.cat([x, c], dim=1) # print(f"size = {x.size()}") return self.g(x) class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.d = nn.Sequential( nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1), nn.LeakyReLU(0.01), nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1), nn.LeakyReLU(0.01), nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1), nn.LeakyReLU(0.01), nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1), nn.LeakyReLU(0.01), nn.Conv2d(512, 1024, kernel_size=4, stride=2, padding=1), nn.LeakyReLU(0.01), nn.Conv2d(1024, 2048, kernel_size=4, stride=2, padding=1), nn.LeakyReLU(0.01) ) self.conv1 = nn.Conv2d(2048, 1, kernel_size=3, stride=1, padding=1, bias=False) self.conv2 = nn.Conv2d(2048, 2, kernel_size=4, bias=False) def forward(self, x): h = self.d(x) out_src = self.conv1(h) out_cls = self.conv2(h) # print(out_cls.size()) return out_src, out_cls.view(out_cls.size(0), out_cls.size(1))