qa_hr_chatbot / app.py
Syed Junaid Iqbal
Update app.py
5103cb0
raw
history blame
10.9 kB
import subprocess
import streamlit as st
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma, FAISS
from langchain.embeddings import FastEmbedEmbeddings # General embeddings from HuggingFace models.
from langchain.memory import ConversationBufferMemory
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks import StreamlitCallbackHandler
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from htmlTemplates import css, bot_template, user_template
from langchain.llms import LlamaCpp, OpenAI, GooglePalm # For loading transformer models.
from langchain.document_loaders import PyPDFLoader, TextLoader, CSVLoader
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain import hub
import tempfile
import os
import glob
import shutil
import time
# TEXT LOADERS
def get_pdf_text(pdf_docs):
"""
Purpose: A hypothetical loader for PDF files in Python.
Usage: Used to extract text or other information from PDF documents.
Load Function: A load_pdf function might be used to read and extract data from a PDF file.
input : pdf document path
returns : extracted text
"""
temp_dir = tempfile.TemporaryDirectory()
temp_filepath = os.path.join(temp_dir.name, pdf_docs.name)
with open(temp_filepath, "wb") as f:
f.write(pdf_docs.getvalue())
pdf_loader = PyPDFLoader(temp_filepath)
pdf_doc = pdf_loader.load()
return pdf_doc
def get_text_file(text_docs):
"""
"""
temp_dir = tempfile.TemporaryDirectory()
temp_filepath = os.path.join(temp_dir.name, text_docs.name)
with open(temp_filepath, "wb") as f:
f.write(text_docs.getvalue())
text_loader = TextLoader(temp_filepath)
text_doc = text_loader.load()
return text_doc
def get_csv_file(csv_docs):
temp_dir = tempfile.TemporaryDirectory()
temp_filepath = os.path.join(temp_dir.name, csv_docs.name)
with open(temp_filepath, "wb") as f:
f.write(csv_docs.getvalue())
csv_loader = CSVLoader(temp_filepath)
csv_doc = csv_loader.load()
return csv_doc
# Break the documents into chunks
def get_text_chunks(documents):
"""
For the compute purpose we will split the document into multiple smaller chunks.
IMPORTANT : If the chunks too small we will miss the context and if its too large we will have longer compute time
"""
text_splitter = RecursiveCharacterTextSplitter(
chunk_size= 1000,
chunk_overlap=200,
)
text_chunks = text_splitter.split_documents(documents)
return text_chunks
# Save chunks to vector store
def get_vectorstore(text_chunks):
"""
Load our vectors into chroma DB, Googles Vector Store
"""
vectorstore = Chroma.from_documents(documents= text_chunks,
embedding= st.session_state.embeddings,
persist_directory= "./vectordb/")
return vectorstore
# Bind the Vector DB, Large Language models and Embedding models all into one container
def get_conversation_chain(vectorstore):
"""
This is a langchain model where we will be binding the runner to infer data from LLM
"""
model_path = st.session_state.model
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
if st.session_state.model == "Google_PaLm" :
llm = GooglePalm(google_api_key = "AIzaSyAIo7rw6iJPWpkpOXSJk6BnuOKNSaB5muM",
max_output_tokens = 4000,
callback_manager=callback_manager)
elif st.session_state.model == "Open_AIGPT-3.5-Turbo":
llm = OpenAI(api_key = "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",
callback_manager = callback_manager,
max_tokens= 4000 )
else:
llm = LlamaCpp(model_path= model_path,
n_ctx= 4000,
max_tokens= 4000,
f16_kv = True,
callback_manager = callback_manager,
verbose=True)
prompt_template = """You are a personal HR Bot assistant for answering any questions about Companies policies
You are given a question and a set of documents.
If the user's question requires you to provide specific information from the documents, give your answer based only on the examples provided below. DON'T generate an answer that is NOT written in the provided examples.
If you don't find the answer to the user's question with the examples provided to you below, answer that you didn't find the answer in the documentation and propose him to rephrase his query with more details.
Use bullet points if you have to make a list, only if necessary. Use 'DOCUMENTS' as a reference point, to understand and give a consciese output in 3 or 5 sentences.
QUESTION: {question}
DOCUMENTS:
=========
{context}
=========
Finish by proposing your help for anything else.
"""
rag_prompt_custom = PromptTemplate.from_template(prompt_template)
# prompt = hub.pull("rlm/rag-prompt")
prompt = hub.pull("rlm/rag-prompt-mistral")
conversation_chain = RetrievalQA.from_chain_type(
llm,
retriever= vectorstore.as_retriever(),
chain_type_kwargs={"prompt": prompt},
)
conversation_chain.callback_manager = callback_manager
conversation_chain.memory = ConversationBufferMemory()
return conversation_chain
# an stream lit interface to handle and save our chats
def handle_userinput():
clear = False
# Add clear chat button
if st.button("Clear Chat history"):
clear = True
st.session_state.messages = []
# initialise our stream lit chat interface
if "messages" not in st.session_state:
st.session_state.messages = [{"role": "assistant", "content": "How can I help you?"}]
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Clear the cash memory
if clear:
st.session_state.conversation.memory.clear()
clear = False
if prompt := st.chat_input():
with st.chat_message("user"):
st.markdown(prompt)
# add user question to chat history
st.session_state.messages.append( {"role": "user", "content": prompt})
with st.chat_message("assistant"):
# set up a call back handler
st_callback = StreamlitCallbackHandler(st.container())
message_holder = st.empty()
full_response = ""
# streamlit call back manager
st.session_state.conversation.callback_manager = st_callback
msg = st.session_state.conversation.run(prompt)
#st.markdown(msg)
for chunk in msg.split():
full_response += chunk + " "s
time.sleep(0.09)
# add a blinking cursor to simulate typing
message_holder.markdown(full_response + "✏️ ")
# Display the responce
message_holder.info(full_response)
# add responce to session state
st.session_state.messages.append({"role": "assistant", "content": full_response})
# Function to apply rounded edges using CSS
def add_rounded_edges(image_path="./randstad_featuredimage.png", radius=30):
st.markdown(
f'<style>.rounded-img{{border-radius: {radius}px; overflow: hidden;}}</style>',s
unsafe_allow_html=True,)
st.image(image_path, use_column_width=True, output_format='auto')
def main():
st.set_page_config(page_title="RANDSTAD",
page_icon=":books:")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.title("πŸ’¬ Randstad HR Chatbot")
st.subheader("πŸš€ A HR powered by Generative AI")
# default model
st.session_state.model = "Google_PaLm"
# user_question = st.text_input("Ask a question about your documents:")
st.session_state.embeddings = FastEmbedEmbeddings( model_name= "BAAI/bge-base-en-v1.5", cache_dir="./embedding_model/")
if len(glob.glob("./vectordb/*.sqlite3")) > 0 :
vectorstore = Chroma(persist_directory="./vectordb/", embedding_function=st.session_state.embeddings)
st.session_state.conversation = get_conversation_chain(vectorstore)
handle_userinput()
# side bar information
with st.sidebar:
# calling a
add_rounded_edges()
st.subheader("Select Your Embedding Model Model")
LLM = list( glob.glob('./models/*.gguf') )
LLM.extend(["Open_AIGPT-3.5-Turbo", "Google_PaLm"])
st.session_state.model = st.selectbox( 'Models', LLM )
st.subheader("Your documents")
docs = st.file_uploader(
"Upload File (pdf,text,csv...) and click 'Process'", accept_multiple_files=True)
if st.button("Process"):
with st.spinner("Processing"):
# get pdf text
doc_list = []
# using the helper function below lets load our dependencies
# Step 1 : Load the documents
for file in docs:
print('file - type : ', file.type)
if file.type == 'text/plain':
# file is .txt
doc_list.extend(get_text_file(file))
elif file.type in ['application/octet-stream', 'application/pdf']:
# file is .pdf
doc_list.extend(get_pdf_text(file))
elif file.type == 'text/csv':
# file is .csv
doc_list.extend(get_csv_file(file))
# Step 2 : Break them into Chunks
text_chunks = get_text_chunks(doc_list)
# Step 3 : Create Embeddings and save them to Vector DB
vectorstore = get_vectorstore(text_chunks)
# Step 4 : Get our conversation chain
st.session_state.conversation = get_conversation_chain(vectorstore)
if __name__ == '__main__':
command = 'CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python --no-cache-dir'
# Run the command using subprocess
try:
subprocess.run(command, shell=True, check=True)
print("Command executed successfully.")
except subprocess.CalledProcessError as e:
print(f"Error: {e}")
main()