Spaces:
Paused
Paused
File size: 5,662 Bytes
f085c10 ddf266a 34ef142 f085c10 9bd8b79 3e1aa0b f085c10 3e1aa0b 91bc905 ddf266a f085c10 6692e0b f085c10 6692e0b f085c10 a80fb91 f085c10 6692e0b f085c10 91830bb 9bd8b79 f085c10 6692e0b 91830bb 2d460ba a80fb91 3e1aa0b 6692e0b ddf266a f085c10 91830bb ddf266a 6692e0b f085c10 6692e0b f085c10 6692e0b ddf266a 6692e0b 91830bb 6692e0b 91830bb 6692e0b a80fb91 ddf266a f085c10 6692e0b f085c10 ddf266a f085c10 ddf266a f085c10 ddf266a f085c10 6692e0b ddf266a f085c10 ddf266a f085c10 6692e0b f085c10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import io
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.chains.question_answering import load_qa_chain
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.llms import HuggingFacePipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
# Global variables
knowledge_base = None
qa_chain = None
# PDF ํ์ผ ๋ก๋ ๋ฐ ํ
์คํธ ์ถ์ถ
def load_pdf(pdf_file):
pdf_reader = PdfReader(pdf_file)
text = "".join(page.extract_text() for page in pdf_reader.pages)
return text
# ํ
์คํธ๋ฅผ ์ฒญํฌ๋ก ๋ถํ
def split_text(text):
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
return text_splitter.split_text(text)
# FAISS ๋ฒกํฐ ์ ์ฅ์ ์์ฑ
def create_knowledge_base(chunks):
model_name = "sentence-transformers/all-mpnet-base-v2" # ์๋ฒ ๋ฉ ๋ชจ๋ธ์ ๋ช
์
embeddings = HuggingFaceEmbeddings(model_name=model_name)
return FAISS.from_texts(chunks, embeddings)
# Hugging Face ๋ชจ๋ธ ๋ก๋
def load_model():
model_name = "halyn/gemma2-2b-it-finetuned-paperqa" # ํ
์คํธ ์์ฑ ๋ชจ๋ธ ์ฌ์ฉ
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=None, clean_up_tokenization_spaces=False)
model = AutoModelForCausalLM.from_pretrained(model_name, cache_dir=None)
return pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=150, temperature=0.1)
# QA ์ฒด์ธ ์ค์
def setup_qa_chain():
global qa_chain
try:
pipe = load_model()
except Exception as e:
print(f"Error loading model: {e}")
return
llm = HuggingFacePipeline(pipeline=pipe)
qa_chain = load_qa_chain(llm, chain_type="stuff")
# ๋ฉ์ธ ํ์ด์ง UI
def main_page():
st.title("Welcome to GemmaPaperQA")
st.subheader("Upload Your Paper")
paper = st.file_uploader("Upload Here!", type="pdf", label_visibility="hidden")
if paper:
st.write(f"Upload complete! File name: {paper.name}")
# ํ์ผ ํฌ๊ธฐ ํ์ธ
file_size = paper.size # ํ์ผ ํฌ๊ธฐ๋ฅผ ํ์ผ ํฌ์ธํฐ ์ด๋ ์์ด ํ์ธ
if file_size > 10 * 1024 * 1024: # 10MB ์ ํ
st.error("File is too large! Please upload a file smaller than 10MB.")
return
# ์ค๊ฐ ํ์ธ ์ ์ฐจ - PDF ๋ด์ฉ ๋ฏธ๋ฆฌ๋ณด๊ธฐ
with st.spinner('Processing PDF...'):
try:
paper.seek(0) # ํ์ผ ์ฝ๊ธฐ ํฌ์ธํฐ๋ฅผ ์ฒ์์ผ๋ก ๋๋๋ฆผ
contents = paper.read()
pdf_file = io.BytesIO(contents)
text = load_pdf(pdf_file)
# ํ
์คํธ๊ฐ ์ถ์ถ๋์ง ์์ ๊ฒฝ์ฐ ์๋ฌ ์ฒ๋ฆฌ
if len(text.strip()) == 0:
st.error("The PDF appears to have no extractable text. Please check the file and try again.")
return
st.text_area("Preview of extracted text", text[:1000], height=200)
st.write(f"Total characters extracted: {len(text)}")
global knowledge_base
if st.button("Proceed with this file"):
chunks = split_text(text)
knowledge_base = create_knowledge_base(chunks)
if knowledge_base is None:
st.error("Failed to create knowledge base.")
return
setup_qa_chain()
st.session_state.paper_name = paper.name[:-4]
st.session_state.page = "chat"
st.success("PDF successfully processed! You can now ask questions.")
except Exception as e:
st.error(f"Failed to process the PDF: {str(e)}")
# ์ฑํ
ํ์ด์ง UI
def chat_page():
st.title(f"Ask anything about {st.session_state.paper_name}")
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("Chat here!"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
response = get_response_from_model(prompt)
with st.chat_message("assistant"):
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})
if st.button("Go back to main page"):
st.session_state.page = "main"
# ๋ชจ๋ธ ์๋ต ์ฒ๋ฆฌ
def get_response_from_model(prompt):
try:
global knowledge_base, qa_chain
if not knowledge_base:
return "No PDF has been uploaded yet."
if not qa_chain:
return "QA chain is not initialized."
docs = knowledge_base.similarity_search(prompt)
response = qa_chain.run(input_documents=docs, question=prompt)
if "Helpful Answer:" in response:
response = response.split("Helpful Answer:")[1].strip()
return response
except Exception as e:
return f"Error: {str(e)}"
# ํ์ด์ง ์ค์
if "page" not in st.session_state:
st.session_state.page = "main"
if "paper_name" not in st.session_state:
st.session_state.paper_name = ""
# ํ์ด์ง ๋ ๋๋ง
if st.session_state.page == "main":
main_page()
elif st.session_state.page == "chat":
chat_page()
|