Work in process
Browse files
app.py
CHANGED
@@ -9,23 +9,240 @@
|
|
9 |
# print("Command executed successfully.")
|
10 |
# else:
|
11 |
# print("Command failed with return code:", result.returncode)
|
|
|
12 |
import gc
|
|
|
13 |
import math
|
14 |
-
|
15 |
-
import torch.multiprocessing as mp
|
16 |
import os
|
17 |
-
|
|
|
18 |
os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "1"
|
|
|
19 |
import ffmpeg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
import cv2
|
|
|
21 |
|
|
|
|
|
22 |
|
23 |
-
def
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
def
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
combined_frames = sorted([os.path.join(output_combined_dir, img_name) for img_name in os.listdir(output_combined_dir)])
|
31 |
if combined_frames:
|
@@ -37,7 +254,7 @@ def show_res_by_slider(frame_per, click_stack):
|
|
37 |
total_frames_num = len(output_masked_frame_path)
|
38 |
if total_frames_num == 0:
|
39 |
print("No output results found")
|
40 |
-
return None, None
|
41 |
else:
|
42 |
frame_num = math.floor(total_frames_num * frame_per / 100)
|
43 |
if frame_per == 100:
|
@@ -46,11 +263,87 @@ def show_res_by_slider(frame_per, click_stack):
|
|
46 |
print(f"{chosen_frame_path}")
|
47 |
chosen_frame_show = cv2.imread(chosen_frame_path)
|
48 |
chosen_frame_show = cv2.cvtColor(chosen_frame_show, cv2.COLOR_BGR2RGB)
|
49 |
-
points_dict, labels_dict
|
50 |
if frame_num in points_dict and frame_num in labels_dict:
|
51 |
chosen_frame_show = draw_markers(chosen_frame_show, points_dict[frame_num], labels_dict[frame_num])
|
52 |
return chosen_frame_show, chosen_frame_show, frame_num
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
def increment_ann_obj_id(ann_obj_id):
|
55 |
ann_obj_id += 1
|
56 |
return ann_obj_id
|
@@ -58,40 +351,141 @@ def increment_ann_obj_id(ann_obj_id):
|
|
58 |
def drawing_board_get_input_first_frame(input_first_frame):
|
59 |
return input_first_frame
|
60 |
|
61 |
-
def
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
def seg_track_app():
|
82 |
-
import gradio as gr
|
83 |
|
84 |
-
|
85 |
-
return sam_click_wrapper1(checkpoint, frame_num, point_mode, click_stack, ann_obj_id, [evt.index[0], evt.index[1]])
|
86 |
|
87 |
-
def
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
scale_slider = gr.Slider.update(minimum=1.0,
|
96 |
maximum=fps,
|
97 |
step=1.0,
|
@@ -100,45 +494,107 @@ def seg_track_app():
|
|
100 |
maximum= total_frames / fps,
|
101 |
step=1.0/fps,
|
102 |
value=0.0,)
|
103 |
-
return scale_slider, frame_per
|
104 |
-
|
105 |
-
def get_meta_from_video(input_video, scale_slider):
|
106 |
-
import gradio as gr
|
107 |
-
output_dir = '/tmp/output_frames'
|
108 |
-
output_masks_dir = '/tmp/output_masks'
|
109 |
-
output_combined_dir = '/tmp/`output_combined`'
|
110 |
-
clear_folder(output_dir)
|
111 |
-
clear_folder(output_masks_dir)
|
112 |
-
clear_folder(output_combined_dir)
|
113 |
-
if input_video is None:
|
114 |
-
return ({}, {}, {}), None, None, 0, None, None, None, 0
|
115 |
-
cap = cv2.VideoCapture(input_video)
|
116 |
-
fps = cap.get(cv2.CAP_PROP_FPS)
|
117 |
-
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
118 |
-
cap.release()
|
119 |
-
frame_interval = max(1, int(fps // scale_slider))
|
120 |
-
print(f"frame_interval: {frame_interval}")
|
121 |
-
try:
|
122 |
-
ffmpeg.input(input_video, hwaccel='cuda').output(
|
123 |
-
os.path.join(output_dir, '%07d.jpg'), q=2, start_number=0,
|
124 |
-
vf=rf'select=not(mod(n\,{frame_interval}))', vsync='vfr'
|
125 |
-
).run()
|
126 |
-
except:
|
127 |
-
print(f"ffmpeg cuda err")
|
128 |
-
ffmpeg.input(input_video).output(
|
129 |
-
os.path.join(output_dir, '%07d.jpg'), q=2, start_number=0,
|
130 |
-
vf=rf'select=not(mod(n\,{frame_interval}))', vsync='vfr'
|
131 |
-
).run()
|
132 |
-
|
133 |
-
first_frame_path = os.path.join(output_dir, '0000000.jpg')
|
134 |
-
first_frame = cv2.imread(first_frame_path)
|
135 |
-
first_frame_rgb = cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB)
|
136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
frame_per = gr.Slider.update(minimum= 0.0,
|
138 |
maximum= total_frames / fps,
|
139 |
step=frame_interval / fps,
|
140 |
value=0.0,)
|
141 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
##########################################################
|
144 |
###################### Front-end ########################
|
@@ -152,8 +608,9 @@ def seg_track_app():
|
|
152 |
"""
|
153 |
|
154 |
app = gr.Blocks(css=css)
|
155 |
-
|
156 |
with app:
|
|
|
|
|
157 |
gr.Markdown(
|
158 |
'''
|
159 |
<div style="text-align:center; margin-bottom:20px;">
|
@@ -216,7 +673,7 @@ def seg_track_app():
|
|
216 |
'''
|
217 |
)
|
218 |
|
219 |
-
click_stack = gr.State(({}, {}
|
220 |
frame_num = gr.State(value=(int(0)))
|
221 |
ann_obj_id = gr.State(value=(int(0)))
|
222 |
last_draw = gr.State(None)
|
@@ -226,7 +683,7 @@ def seg_track_app():
|
|
226 |
with gr.Row():
|
227 |
tab_video_input = gr.Tab(label="Video input")
|
228 |
with tab_video_input:
|
229 |
-
input_video = gr.Video(label='Input video', elem_id="input_output_video")
|
230 |
with gr.Row():
|
231 |
checkpoint = gr.Dropdown(label="Model Size", choices=["tiny", "small", "base-plus", "large"], value="tiny")
|
232 |
scale_slider = gr.Slider(
|
@@ -251,7 +708,7 @@ def seg_track_app():
|
|
251 |
|
252 |
tab_click = gr.Tab(label="Point Prompt")
|
253 |
with tab_click:
|
254 |
-
input_first_frame = gr.Image(label='Segment result of first frame',interactive=True
|
255 |
with gr.Row():
|
256 |
point_mode = gr.Radio(
|
257 |
choices=["Positive", "Negative"],
|
@@ -324,20 +781,22 @@ def seg_track_app():
|
|
324 |
|
325 |
# listen to the preprocess button click to get the first frame of video with scaling
|
326 |
preprocess_button.click(
|
327 |
-
fn=
|
328 |
inputs=[
|
|
|
329 |
input_video,
|
330 |
scale_slider,
|
|
|
331 |
],
|
332 |
outputs=[
|
333 |
-
|
334 |
]
|
335 |
)
|
336 |
|
337 |
frame_per.release(
|
338 |
-
fn=
|
339 |
inputs=[
|
340 |
-
frame_per, click_stack
|
341 |
],
|
342 |
outputs=[
|
343 |
input_first_frame, drawing_board, frame_num
|
@@ -346,9 +805,9 @@ def seg_track_app():
|
|
346 |
|
347 |
# Interactively modify the mask acc click
|
348 |
input_first_frame.select(
|
349 |
-
fn=
|
350 |
inputs=[
|
351 |
-
|
352 |
],
|
353 |
outputs=[
|
354 |
input_first_frame, drawing_board, click_stack
|
@@ -357,10 +816,9 @@ def seg_track_app():
|
|
357 |
|
358 |
# Track object in video
|
359 |
track_for_video.click(
|
360 |
-
fn=
|
361 |
inputs=[
|
362 |
-
|
363 |
-
checkpoint,
|
364 |
frame_num,
|
365 |
input_video,
|
366 |
],
|
@@ -374,17 +832,17 @@ def seg_track_app():
|
|
374 |
)
|
375 |
|
376 |
reset_button.click(
|
377 |
-
fn=
|
378 |
-
inputs=[],
|
379 |
outputs=[
|
380 |
click_stack, input_first_frame, drawing_board, frame_per, output_video, output_mp4, output_mask, ann_obj_id
|
381 |
]
|
382 |
)
|
383 |
|
384 |
new_object_button.click(
|
385 |
-
fn=
|
386 |
inputs=[
|
387 |
-
ann_obj_id
|
388 |
],
|
389 |
outputs=[
|
390 |
ann_obj_id
|
@@ -392,30 +850,33 @@ def seg_track_app():
|
|
392 |
)
|
393 |
|
394 |
tab_stroke.select(
|
395 |
-
fn=
|
396 |
-
inputs=[input_first_frame
|
397 |
outputs=[drawing_board,],
|
398 |
)
|
399 |
|
400 |
seg_acc_stroke.click(
|
401 |
-
fn=
|
402 |
inputs=[
|
403 |
-
|
404 |
],
|
405 |
outputs=[
|
406 |
-
|
407 |
]
|
408 |
)
|
409 |
|
410 |
input_video.change(
|
411 |
-
fn=
|
412 |
-
inputs=[input_video],
|
413 |
-
outputs=[scale_slider, frame_per]
|
414 |
)
|
415 |
|
416 |
app.queue(concurrency_count=1)
|
417 |
-
app.launch(debug=True, share=False)
|
418 |
|
419 |
if __name__ == "__main__":
|
420 |
-
mp.set_start_method(
|
|
|
|
|
|
|
421 |
seg_track_app()
|
|
|
9 |
# print("Command executed successfully.")
|
10 |
# else:
|
11 |
# print("Command failed with return code:", result.returncode)
|
12 |
+
import datetime
|
13 |
import gc
|
14 |
+
import hashlib
|
15 |
import math
|
16 |
+
import multiprocessing as mp
|
|
|
17 |
import os
|
18 |
+
import threading
|
19 |
+
import time
|
20 |
os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "1"
|
21 |
+
import shutil
|
22 |
import ffmpeg
|
23 |
+
from moviepy.editor import ImageSequenceClip
|
24 |
+
import zipfile
|
25 |
+
# import gradio as gr
|
26 |
+
import torch
|
27 |
+
import numpy as np
|
28 |
+
import matplotlib.pyplot as plt
|
29 |
+
from PIL import Image
|
30 |
+
from sam2.build_sam import build_sam2
|
31 |
+
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
32 |
+
from sam2.build_sam import build_sam2_video_predictor
|
33 |
import cv2
|
34 |
+
import uuid
|
35 |
|
36 |
+
user_processes = {}
|
37 |
+
PROCESS_TIMEOUT = datetime.timedelta(minutes=4)
|
38 |
|
39 |
+
def reset(seg_tracker):
|
40 |
+
if seg_tracker is not None:
|
41 |
+
predictor, inference_state, image_predictor = seg_tracker
|
42 |
+
predictor.reset_state(inference_state)
|
43 |
+
del predictor
|
44 |
+
del inference_state
|
45 |
+
del image_predictor
|
46 |
+
del seg_tracker
|
47 |
+
gc.collect()
|
48 |
+
torch.cuda.empty_cache()
|
49 |
+
return None, ({}, {}), None, None, 0, None, None, None, 0
|
50 |
|
51 |
+
def extract_video_info(input_video):
|
52 |
+
if input_video is None:
|
53 |
+
return 4, 4, None, None, None, None, None
|
54 |
+
cap = cv2.VideoCapture(input_video)
|
55 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
56 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
57 |
+
cap.release()
|
58 |
+
return fps, total_frames, None, None, None, None, None
|
59 |
+
|
60 |
+
def get_meta_from_video(session_id, input_video, scale_slider, checkpoint):
|
61 |
+
output_dir = f'/tmp/output_frames/{session_id}'
|
62 |
+
output_masks_dir = f'/tmp/output_masks/{session_id}'
|
63 |
+
output_combined_dir = f'/tmp/output_combined/{session_id}'
|
64 |
+
clear_folder(output_dir)
|
65 |
+
clear_folder(output_masks_dir)
|
66 |
+
clear_folder(output_combined_dir)
|
67 |
+
if input_video is None:
|
68 |
+
return None, ({}, {}), None, None, (4, 1, 4), None, None, None, 0
|
69 |
+
cap = cv2.VideoCapture(input_video)
|
70 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
71 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
72 |
+
cap.release()
|
73 |
+
frame_interval = max(1, int(fps // scale_slider))
|
74 |
+
print(f"frame_interval: {frame_interval}")
|
75 |
+
try:
|
76 |
+
ffmpeg.input(input_video, hwaccel='cuda').output(
|
77 |
+
os.path.join(output_dir, '%07d.jpg'), q=2, start_number=0,
|
78 |
+
vf=rf'select=not(mod(n\,{frame_interval}))', vsync='vfr'
|
79 |
+
).run()
|
80 |
+
except:
|
81 |
+
print(f"ffmpeg cuda err")
|
82 |
+
ffmpeg.input(input_video).output(
|
83 |
+
os.path.join(output_dir, '%07d.jpg'), q=2, start_number=0,
|
84 |
+
vf=rf'select=not(mod(n\,{frame_interval}))', vsync='vfr'
|
85 |
+
).run()
|
86 |
+
|
87 |
+
first_frame_path = os.path.join(output_dir, '0000000.jpg')
|
88 |
+
first_frame = cv2.imread(first_frame_path)
|
89 |
+
first_frame_rgb = cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB)
|
90 |
+
|
91 |
+
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
92 |
+
if torch.cuda.get_device_properties(0).major >= 8:
|
93 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
94 |
+
torch.backends.cudnn.allow_tf32 = True
|
95 |
+
|
96 |
+
sam2_checkpoint = "segment-anything-2/checkpoints/sam2_hiera_tiny.pt"
|
97 |
+
model_cfg = "sam2_hiera_t.yaml"
|
98 |
+
if checkpoint == "samll":
|
99 |
+
sam2_checkpoint = "segment-anything-2/checkpoints/sam2_hiera_small.pt"
|
100 |
+
model_cfg = "sam2_hiera_s.yaml"
|
101 |
+
elif checkpoint == "base-plus":
|
102 |
+
sam2_checkpoint = "segment-anything-2/checkpoints/sam2_hiera_base_plus.pt"
|
103 |
+
model_cfg = "sam2_hiera_b+.yaml"
|
104 |
+
elif checkpoint == "large":
|
105 |
+
sam2_checkpoint = "segment-anything-2/checkpoints/sam2_hiera_large.pt"
|
106 |
+
model_cfg = "sam2_hiera_l.yaml"
|
107 |
+
|
108 |
+
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cuda")
|
109 |
+
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda")
|
110 |
+
image_predictor = SAM2ImagePredictor(sam2_model)
|
111 |
+
inference_state = predictor.init_state(video_path=output_dir)
|
112 |
+
predictor.reset_state(inference_state)
|
113 |
+
return (predictor, inference_state, image_predictor), ({}, {}), first_frame_rgb, first_frame_rgb, (fps, frame_interval, total_frames), None, None, None, 0
|
114 |
+
|
115 |
+
def mask2bbox(mask):
|
116 |
+
if len(np.where(mask > 0)[0]) == 0:
|
117 |
+
print(f'not mask')
|
118 |
+
return np.array([0, 0, 0, 0]).astype(np.int64), False
|
119 |
+
x_ = np.sum(mask, axis=0)
|
120 |
+
y_ = np.sum(mask, axis=1)
|
121 |
+
x0 = np.min(np.nonzero(x_)[0])
|
122 |
+
x1 = np.max(np.nonzero(x_)[0])
|
123 |
+
y0 = np.min(np.nonzero(y_)[0])
|
124 |
+
y1 = np.max(np.nonzero(y_)[0])
|
125 |
+
return np.array([x0, y0, x1, y1]).astype(np.int64), True
|
126 |
+
|
127 |
+
def sam_stroke(session_id, seg_tracker, drawing_board, last_draw, frame_num, ann_obj_id):
|
128 |
+
predictor, inference_state, image_predictor = seg_tracker
|
129 |
+
image_path = f'/tmp/output_frames/{session_id}/{frame_num:07d}.jpg'
|
130 |
+
image = cv2.imread(image_path)
|
131 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
132 |
+
display_image = drawing_board["image"]
|
133 |
+
image_predictor.set_image(image)
|
134 |
+
input_mask = drawing_board["mask"]
|
135 |
+
input_mask[input_mask != 0] = 255
|
136 |
+
if last_draw is not None:
|
137 |
+
diff_mask = cv2.absdiff(input_mask, last_draw)
|
138 |
+
input_mask = diff_mask
|
139 |
+
bbox, hasMask = mask2bbox(input_mask[:, :, 0])
|
140 |
+
if not hasMask :
|
141 |
+
return seg_tracker, display_image, display_image, None
|
142 |
+
masks, scores, logits = image_predictor.predict( point_coords=None, point_labels=None, box=bbox[None, :], multimask_output=False,)
|
143 |
+
mask = masks > 0.0
|
144 |
+
masked_frame = show_mask(mask, display_image, ann_obj_id)
|
145 |
+
masked_with_rect = draw_rect(masked_frame, bbox, ann_obj_id)
|
146 |
+
frame_idx, object_ids, masks = predictor.add_new_mask(inference_state, frame_idx=frame_num, obj_id=ann_obj_id, mask=mask[0])
|
147 |
+
last_draw = drawing_board["mask"]
|
148 |
+
return seg_tracker, masked_with_rect, masked_with_rect, last_draw
|
149 |
+
|
150 |
+
def draw_rect(image, bbox, obj_id):
|
151 |
+
cmap = plt.get_cmap("tab10")
|
152 |
+
color = np.array(cmap(obj_id)[:3])
|
153 |
+
rgb_color = tuple(map(int, (color[:3] * 255).astype(np.uint8)))
|
154 |
+
inv_color = tuple(map(int, (255 - color[:3] * 255).astype(np.uint8)))
|
155 |
+
x0, y0, x1, y1 = bbox
|
156 |
+
image_with_rect = cv2.rectangle(image.copy(), (x0, y0), (x1, y1), rgb_color, thickness=2)
|
157 |
+
return image_with_rect
|
158 |
+
|
159 |
+
def sam_click(session_id, seg_tracker, frame_num, point_mode, click_stack, ann_obj_id, point):
|
160 |
+
points_dict, labels_dict = click_stack
|
161 |
+
predictor, inference_state, image_predictor = seg_tracker
|
162 |
+
ann_frame_idx = frame_num # the frame index we interact with
|
163 |
+
print(f'ann_frame_idx: {ann_frame_idx}')
|
164 |
+
if point_mode == "Positive":
|
165 |
+
label = np.array([1], np.int32)
|
166 |
+
else:
|
167 |
+
label = np.array([0], np.int32)
|
168 |
+
|
169 |
+
if ann_frame_idx not in points_dict:
|
170 |
+
points_dict[ann_frame_idx] = {}
|
171 |
+
if ann_frame_idx not in labels_dict:
|
172 |
+
labels_dict[ann_frame_idx] = {}
|
173 |
+
|
174 |
+
if ann_obj_id not in points_dict[ann_frame_idx]:
|
175 |
+
points_dict[ann_frame_idx][ann_obj_id] = np.empty((0, 2), dtype=np.float32)
|
176 |
+
if ann_obj_id not in labels_dict[ann_frame_idx]:
|
177 |
+
labels_dict[ann_frame_idx][ann_obj_id] = np.empty((0,), dtype=np.int32)
|
178 |
+
|
179 |
+
points_dict[ann_frame_idx][ann_obj_id] = np.append(points_dict[ann_frame_idx][ann_obj_id], point, axis=0)
|
180 |
+
labels_dict[ann_frame_idx][ann_obj_id] = np.append(labels_dict[ann_frame_idx][ann_obj_id], label, axis=0)
|
181 |
+
|
182 |
+
click_stack = (points_dict, labels_dict)
|
183 |
+
|
184 |
+
frame_idx, out_obj_ids, out_mask_logits = predictor.add_new_points(
|
185 |
+
inference_state=inference_state,
|
186 |
+
frame_idx=ann_frame_idx,
|
187 |
+
obj_id=ann_obj_id,
|
188 |
+
points=points_dict[ann_frame_idx][ann_obj_id],
|
189 |
+
labels=labels_dict[ann_frame_idx][ann_obj_id],
|
190 |
+
)
|
191 |
+
|
192 |
+
image_path = f'/tmp/output_frames/{session_id}/{ann_frame_idx:07d}.jpg'
|
193 |
+
image = cv2.imread(image_path)
|
194 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
195 |
+
|
196 |
+
masked_frame = image.copy()
|
197 |
+
for i, obj_id in enumerate(out_obj_ids):
|
198 |
+
mask = (out_mask_logits[i] > 0.0).cpu().numpy()
|
199 |
+
masked_frame = show_mask(mask, image=masked_frame, obj_id=obj_id)
|
200 |
+
masked_frame_with_markers = draw_markers(masked_frame, points_dict[ann_frame_idx], labels_dict[ann_frame_idx])
|
201 |
+
|
202 |
+
return seg_tracker, masked_frame_with_markers, masked_frame_with_markers, click_stack
|
203 |
+
|
204 |
+
def draw_markers(image, points_dict, labels_dict):
|
205 |
+
cmap = plt.get_cmap("tab10")
|
206 |
+
image_h, image_w = image.shape[:2]
|
207 |
+
marker_size = max(1, int(min(image_h, image_w) * 0.05))
|
208 |
+
|
209 |
+
for obj_id in points_dict:
|
210 |
+
color = np.array(cmap(obj_id)[:3])
|
211 |
+
rgb_color = tuple(map(int, (color[:3] * 255).astype(np.uint8)))
|
212 |
+
inv_color = tuple(map(int, (255 - color[:3] * 255).astype(np.uint8)))
|
213 |
+
for point, label in zip(points_dict[obj_id], labels_dict[obj_id]):
|
214 |
+
x, y = int(point[0]), int(point[1])
|
215 |
+
if label == 1:
|
216 |
+
cv2.drawMarker(image, (x, y), inv_color, markerType=cv2.MARKER_CROSS, markerSize=marker_size, thickness=2)
|
217 |
+
else:
|
218 |
+
cv2.drawMarker(image, (x, y), inv_color, markerType=cv2.MARKER_TILTED_CROSS, markerSize=int(marker_size / np.sqrt(2)), thickness=2)
|
219 |
+
|
220 |
+
return image
|
221 |
+
|
222 |
+
def show_mask(mask, image=None, obj_id=None):
|
223 |
+
cmap = plt.get_cmap("tab10")
|
224 |
+
cmap_idx = 0 if obj_id is None else obj_id
|
225 |
+
color = np.array([*cmap(cmap_idx)[:3], 0.6])
|
226 |
+
|
227 |
+
h, w = mask.shape[-2:]
|
228 |
+
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
229 |
+
mask_image = (mask_image * 255).astype(np.uint8)
|
230 |
+
if image is not None:
|
231 |
+
image_h, image_w = image.shape[:2]
|
232 |
+
if (image_h, image_w) != (h, w):
|
233 |
+
raise ValueError(f"Image dimensions ({image_h}, {image_w}) and mask dimensions ({h}, {w}) do not match")
|
234 |
+
colored_mask = np.zeros_like(image, dtype=np.uint8)
|
235 |
+
for c in range(3):
|
236 |
+
colored_mask[..., c] = mask_image[..., c]
|
237 |
+
alpha_mask = mask_image[..., 3] / 255.0
|
238 |
+
for c in range(3):
|
239 |
+
image[..., c] = np.where(alpha_mask > 0, (1 - alpha_mask) * image[..., c] + alpha_mask * colored_mask[..., c], image[..., c])
|
240 |
+
return image
|
241 |
+
return mask_image
|
242 |
+
|
243 |
+
def show_res_by_slider(session_id, frame_per, click_stack):
|
244 |
+
image_path = f'/tmp/output_frames/{session_id}'
|
245 |
+
output_combined_dir = f'/tmp/output_combined/{session_id}'
|
246 |
|
247 |
combined_frames = sorted([os.path.join(output_combined_dir, img_name) for img_name in os.listdir(output_combined_dir)])
|
248 |
if combined_frames:
|
|
|
254 |
total_frames_num = len(output_masked_frame_path)
|
255 |
if total_frames_num == 0:
|
256 |
print("No output results found")
|
257 |
+
return None, None, 0
|
258 |
else:
|
259 |
frame_num = math.floor(total_frames_num * frame_per / 100)
|
260 |
if frame_per == 100:
|
|
|
263 |
print(f"{chosen_frame_path}")
|
264 |
chosen_frame_show = cv2.imread(chosen_frame_path)
|
265 |
chosen_frame_show = cv2.cvtColor(chosen_frame_show, cv2.COLOR_BGR2RGB)
|
266 |
+
points_dict, labels_dict = click_stack
|
267 |
if frame_num in points_dict and frame_num in labels_dict:
|
268 |
chosen_frame_show = draw_markers(chosen_frame_show, points_dict[frame_num], labels_dict[frame_num])
|
269 |
return chosen_frame_show, chosen_frame_show, frame_num
|
270 |
|
271 |
+
def clear_folder(folder_path):
|
272 |
+
if os.path.exists(folder_path):
|
273 |
+
shutil.rmtree(folder_path)
|
274 |
+
os.makedirs(folder_path)
|
275 |
+
|
276 |
+
def zip_folder(folder_path, output_zip_path):
|
277 |
+
with zipfile.ZipFile(output_zip_path, 'w', zipfile.ZIP_STORED) as zipf:
|
278 |
+
for root, _, files in os.walk(folder_path):
|
279 |
+
for file in files:
|
280 |
+
file_path = os.path.join(root, file)
|
281 |
+
zipf.write(file_path, os.path.relpath(file_path, folder_path))
|
282 |
+
|
283 |
+
def tracking_objects(session_id, seg_tracker, frame_num, input_video):
|
284 |
+
output_dir = f'/tmp/output_frames/{session_id}'
|
285 |
+
output_masks_dir = f'/tmp/output_masks/{session_id}'
|
286 |
+
output_combined_dir = f'/tmp/output_combined/{session_id}'
|
287 |
+
output_files_dir = f'/tmp/output_files/{session_id}'
|
288 |
+
output_video_path = f'{output_files_dir}/output_video.mp4'
|
289 |
+
output_zip_path = f'{output_files_dir}/output_masks.zip'
|
290 |
+
clear_folder(output_masks_dir)
|
291 |
+
clear_folder(output_combined_dir)
|
292 |
+
clear_folder(output_files_dir)
|
293 |
+
video_segments = {}
|
294 |
+
predictor, inference_state, image_predictor = seg_tracker
|
295 |
+
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state):
|
296 |
+
video_segments[out_frame_idx] = {
|
297 |
+
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
|
298 |
+
for i, out_obj_id in enumerate(out_obj_ids)
|
299 |
+
}
|
300 |
+
frame_files = sorted([f for f in os.listdir(output_dir) if f.endswith('.jpg')])
|
301 |
+
# for frame_idx in sorted(video_segments.keys()):
|
302 |
+
for frame_file in frame_files:
|
303 |
+
frame_idx = int(os.path.splitext(frame_file)[0])
|
304 |
+
frame_path = os.path.join(output_dir, frame_file)
|
305 |
+
image = cv2.imread(frame_path)
|
306 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
307 |
+
masked_frame = image.copy()
|
308 |
+
if frame_idx in video_segments:
|
309 |
+
for obj_id, mask in video_segments[frame_idx].items():
|
310 |
+
masked_frame = show_mask(mask, image=masked_frame, obj_id=obj_id)
|
311 |
+
mask_output_path = os.path.join(output_masks_dir, f'{obj_id}_{frame_idx:07d}.png')
|
312 |
+
cv2.imwrite(mask_output_path, show_mask(mask))
|
313 |
+
combined_output_path = os.path.join(output_combined_dir, f'{frame_idx:07d}.png')
|
314 |
+
combined_image_bgr = cv2.cvtColor(masked_frame, cv2.COLOR_RGB2BGR)
|
315 |
+
cv2.imwrite(combined_output_path, combined_image_bgr)
|
316 |
+
if frame_idx == frame_num:
|
317 |
+
final_masked_frame = masked_frame
|
318 |
+
|
319 |
+
cap = cv2.VideoCapture(input_video)
|
320 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
321 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
322 |
+
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
323 |
+
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
324 |
+
cap.release()
|
325 |
+
# output_frames = int(total_frames * scale_slider)
|
326 |
+
output_frames = len([name for name in os.listdir(output_combined_dir) if os.path.isfile(os.path.join(output_combined_dir, name)) and name.endswith('.png')])
|
327 |
+
out_fps = fps * output_frames / total_frames
|
328 |
+
|
329 |
+
# ffmpeg.input(os.path.join(output_combined_dir, '%07d.png'), framerate=out_fps).output(output_video_path, vcodec='h264_nvenc', pix_fmt='yuv420p').run()
|
330 |
+
|
331 |
+
# fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
332 |
+
# out = cv2.VideoWriter(output_video_path, fourcc, out_fps, (frame_width, frame_height))
|
333 |
+
# for i in range(output_frames):
|
334 |
+
# frame_path = os.path.join(output_combined_dir, f'{i:07d}.png')
|
335 |
+
# frame = cv2.imread(frame_path)
|
336 |
+
# out.write(frame)
|
337 |
+
# out.release()
|
338 |
+
|
339 |
+
image_files = [os.path.join(output_combined_dir, f'{i:07d}.png') for i in range(output_frames)]
|
340 |
+
clip = ImageSequenceClip(image_files, fps=out_fps)
|
341 |
+
clip.write_videofile(output_video_path, codec="libx264", fps=out_fps)
|
342 |
+
|
343 |
+
zip_folder(output_masks_dir, output_zip_path)
|
344 |
+
print("done")
|
345 |
+
return final_masked_frame, final_masked_frame, output_video_path, output_video_path, output_zip_path
|
346 |
+
|
347 |
def increment_ann_obj_id(ann_obj_id):
|
348 |
ann_obj_id += 1
|
349 |
return ann_obj_id
|
|
|
351 |
def drawing_board_get_input_first_frame(input_first_frame):
|
352 |
return input_first_frame
|
353 |
|
354 |
+
def process_video(queue, result_queue, session_id):
|
355 |
+
seg_tracker = None
|
356 |
+
click_stack = ({}, {})
|
357 |
+
frame_num = int(0)
|
358 |
+
ann_obj_id =int(0)
|
359 |
+
last_draw = None
|
360 |
+
while True:
|
361 |
+
task = queue.get()
|
362 |
+
if task["command"] == "exit":
|
363 |
+
print(f"Process for {session_id} exiting.")
|
364 |
+
break
|
365 |
+
elif task["command"] == "extract_video_info":
|
366 |
+
input_video = task["input_video"]
|
367 |
+
fps, total_frames, input_first_frame, drawing_board, output_video, output_mp4, output_mask = extract_video_info(input_video)
|
368 |
+
result_queue.put({"fps": fps, "total_frames": total_frames, "input_first_frame": input_first_frame, "drawing_board": drawing_board, "output_video": output_video, "output_mp4": output_mp4, "output_mask": output_mask})
|
369 |
+
elif task["command"] == "get_meta_from_video":
|
370 |
+
input_video = task["input_video"]
|
371 |
+
scale_slider = task["scale_slider"]
|
372 |
+
checkpoint = task["checkpoint"]
|
373 |
+
seg_tracker, click_stack, input_first_frame, drawing_board, frame_per, output_video, output_mp4, output_mask, ann_obj_id = get_meta_from_video(session_id, input_video, scale_slider, checkpoint)
|
374 |
+
result_queue.put({"input_first_frame": input_first_frame, "drawing_board": drawing_board, "frame_per": frame_per, "output_video": output_video, "output_mp4": output_mp4, "output_mask": output_mask, "ann_obj_id": ann_obj_id})
|
375 |
+
elif task["command"] == "sam_stroke":
|
376 |
+
drawing_board = task["drawing_board"]
|
377 |
+
last_draw = task["last_draw"]
|
378 |
+
frame_num = task["frame_num"]
|
379 |
+
ann_obj_id = task["ann_obj_id"]
|
380 |
+
seg_tracker, input_first_frame, drawing_board, last_draw = sam_stroke(session_id, seg_tracker, drawing_board, last_draw, frame_num, ann_obj_id)
|
381 |
+
result_queue.put({"input_first_frame": input_first_frame, "drawing_board": drawing_board, "last_draw": last_draw})
|
382 |
+
elif task["command"] == "sam_click":
|
383 |
+
frame_num = task["frame_num"]
|
384 |
+
point_mode = task["point_mode"]
|
385 |
+
click_stack = task["click_stack"]
|
386 |
+
ann_obj_id = task["ann_obj_id"]
|
387 |
+
point = task["point"]
|
388 |
+
seg_tracker, input_first_frame, drawing_board, last_draw = sam_click(session_id, seg_tracker, frame_num, point_mode, click_stack, ann_obj_id, point)
|
389 |
+
result_queue.put({"input_first_frame": input_first_frame, "drawing_board": drawing_board, "last_draw": last_draw})
|
390 |
+
elif task["command"] == "increment_ann_obj_id":
|
391 |
+
ann_obj_id = task["ann_obj_id"]
|
392 |
+
ann_obj_id = increment_ann_obj_id(ann_obj_id)
|
393 |
+
result_queue.put({"ann_obj_id": ann_obj_id})
|
394 |
+
elif task["command"] == "drawing_board_get_input_first_frame":
|
395 |
+
input_first_frame = task["input_first_frame"]
|
396 |
+
input_first_frame = drawing_board_get_input_first_frame(input_first_frame)
|
397 |
+
result_queue.put({"input_first_frame": input_first_frame})
|
398 |
+
elif task["command"] == "reset":
|
399 |
+
seg_tracker, click_stack, input_first_frame, drawing_board, frame_per, output_video, output_mp4, output_mask, ann_obj_id = reset(seg_tracker)
|
400 |
+
result_queue.put({"click_stack": click_stack, "input_first_frame": input_first_frame, "drawing_board": drawing_board, "frame_per": frame_per, "output_video": output_video, "output_mp4": output_mp4, "output_mask": output_mask, "ann_obj_id": ann_obj_id})
|
401 |
+
elif task["command"] == "show_res_by_slider":
|
402 |
+
frame_per = task["frame_per"]
|
403 |
+
click_stack = task["click_stack"]
|
404 |
+
input_first_frame, drawing_board, frame_num = show_res_by_slider(session_id, frame_per, click_stack)
|
405 |
+
result_queue.put({"input_first_frame": input_first_frame, "drawing_board": drawing_board, "frame_num": frame_num})
|
406 |
+
elif task["command"] == "tracking_objects":
|
407 |
+
frame_num = task["frame_num"]
|
408 |
+
input_video = task["input_video"]
|
409 |
+
input_first_frame, drawing_board, output_video, output_mp4, output_mask = tracking_objects(session_id, seg_tracker, frame_num, input_video)
|
410 |
+
result_queue.put({"input_first_frame": input_first_frame, "drawing_board": drawing_board, "output_video": output_video, "output_mp4": output_mp4, "output_mask": output_mask})
|
411 |
+
else:
|
412 |
+
print(f"Unknown command {task['command']} for {session_id}")
|
413 |
+
result_queue.put("Unknown command")
|
414 |
+
|
415 |
+
def start_process(session_id):
|
416 |
+
if session_id not in user_processes:
|
417 |
+
queue = mp.Queue()
|
418 |
+
result_queue = mp.Queue()
|
419 |
+
process = mp.Process(target=process_video, args=(queue, result_queue, session_id))
|
420 |
+
process.start()
|
421 |
+
user_processes[session_id] = {
|
422 |
+
"process": process,
|
423 |
+
"queue": queue,
|
424 |
+
"result_queue": result_queue,
|
425 |
+
"last_active": datetime.datetime.now()
|
426 |
+
}
|
427 |
+
else:
|
428 |
+
user_processes[session_id]["last_active"] = datetime.datetime.now()
|
429 |
+
return user_processes[session_id]["queue"]
|
430 |
+
|
431 |
+
# def clean_up_processes(session_id, init_clean = False):
|
432 |
+
# now = datetime.datetime.now()
|
433 |
+
# to_remove = []
|
434 |
+
# for s_id, process_info in user_processes.items():
|
435 |
+
# if (now - process_info["last_active"] > PROCESS_TIMEOUT) or (s_id == session_id and init_clean):
|
436 |
+
# process_info["queue"].put({"command": "exit"})
|
437 |
+
# process_info["process"].terminate()
|
438 |
+
# process_info["process"].join()
|
439 |
+
# to_remove.append(s_id)
|
440 |
+
# for s_id in to_remove:
|
441 |
+
# del user_processes[s_id]
|
442 |
+
# print(f"Cleaned up process for session {s_id}.")
|
443 |
+
|
444 |
+
def monitor_and_cleanup_processes():
|
445 |
+
while True:
|
446 |
+
now = datetime.datetime.now()
|
447 |
+
to_remove = []
|
448 |
+
for session_id, process_info in user_processes.items():
|
449 |
+
if now - process_info["last_active"] > PROCESS_TIMEOUT:
|
450 |
+
process_info["queue"].put({"command": "exit"})
|
451 |
+
process_info["process"].terminate()
|
452 |
+
process_info["process"].join()
|
453 |
+
to_remove.append(session_id)
|
454 |
+
for session_id in to_remove:
|
455 |
+
del user_processes[session_id]
|
456 |
+
print(f"Automatically cleaned up process for session {session_id}.")
|
457 |
+
time.sleep(10)
|
458 |
|
459 |
def seg_track_app():
|
|
|
460 |
|
461 |
+
import gradio as gr
|
|
|
462 |
|
463 |
+
def extract_session_id_from_request(request: gr.Request):
|
464 |
+
session_id = hashlib.sha256(f'{request.client.host}:{request.client.port}'.encode('utf-8')).hexdigest()
|
465 |
+
# cookies = request.kwargs["headers"].get('cookie', '')
|
466 |
+
# session_id = None
|
467 |
+
# if '_gid=' in cookies:
|
468 |
+
# session_id = cookies.split('_gid=')[1].split(';')[0]
|
469 |
+
# else:
|
470 |
+
# session_id = str(uuid.uuid4())
|
471 |
+
print(f"session_id {session_id}")
|
472 |
+
return session_id
|
473 |
+
|
474 |
+
def handle_extract_video_info(session_id, input_video):
|
475 |
+
# clean_up_processes(session_id, init_clean=True)
|
476 |
+
if input_video == None:
|
477 |
+
return 0, 0, None, None, None, None, None
|
478 |
+
queue = start_process(session_id)
|
479 |
+
result_queue = user_processes[session_id]["result_queue"]
|
480 |
+
queue.put({"command": "extract_video_info", "input_video": input_video})
|
481 |
+
result = result_queue.get()
|
482 |
+
fps = result.get("fps")
|
483 |
+
total_frames = result.get("total_frames")
|
484 |
+
input_first_frame = result.get("input_first_frame")
|
485 |
+
drawing_board = result.get("drawing_board")
|
486 |
+
output_video = result.get("output_video")
|
487 |
+
output_mp4 = result.get("output_mp4")
|
488 |
+
output_mask = result.get("output_mask")
|
489 |
scale_slider = gr.Slider.update(minimum=1.0,
|
490 |
maximum=fps,
|
491 |
step=1.0,
|
|
|
494 |
maximum= total_frames / fps,
|
495 |
step=1.0/fps,
|
496 |
value=0.0,)
|
497 |
+
return scale_slider, frame_per, input_first_frame, drawing_board, output_video, output_mp4, output_mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
498 |
|
499 |
+
def handle_get_meta_from_video(session_id, input_video, scale_slider, checkpoint):
|
500 |
+
# clean_up_processes(session_id)
|
501 |
+
queue = start_process(session_id)
|
502 |
+
result_queue = user_processes[session_id]["result_queue"]
|
503 |
+
queue.put({"command": "get_meta_from_video", "input_video": input_video, "scale_slider": scale_slider, "checkpoint": checkpoint})
|
504 |
+
result = result_queue.get()
|
505 |
+
input_first_frame = result.get("input_first_frame")
|
506 |
+
drawing_board = result.get("drawing_board")
|
507 |
+
(fps, frame_interval, total_frames) = result.get("frame_per")
|
508 |
+
output_video = result.get("output_video")
|
509 |
+
output_mp4 = result.get("output_mp4")
|
510 |
+
output_mask = result.get("output_mask")
|
511 |
+
ann_obj_id = result.get("ann_obj_id")
|
512 |
frame_per = gr.Slider.update(minimum= 0.0,
|
513 |
maximum= total_frames / fps,
|
514 |
step=frame_interval / fps,
|
515 |
value=0.0,)
|
516 |
+
return input_first_frame, drawing_board, frame_per, output_video, output_mp4, output_mask, ann_obj_id
|
517 |
+
|
518 |
+
def handle_sam_stroke(session_id, drawing_board, last_draw, frame_num, ann_obj_id):
|
519 |
+
# clean_up_processes(session_id)
|
520 |
+
queue = start_process(session_id)
|
521 |
+
result_queue = user_processes[session_id]["result_queue"]
|
522 |
+
queue.put({"command": "sam_stroke", "drawing_board": drawing_board, "last_draw": last_draw, "frame_num": frame_num, "ann_obj_id": ann_obj_id})
|
523 |
+
result = result_queue.get()
|
524 |
+
input_first_frame = result.get("input_first_frame")
|
525 |
+
drawing_board = result.get("drawing_board")
|
526 |
+
last_draw = result.get("last_draw")
|
527 |
+
return input_first_frame, drawing_board, last_draw
|
528 |
+
|
529 |
+
def handle_sam_click(session_id, frame_num, point_mode, click_stack, ann_obj_id, evt: gr.SelectData):
|
530 |
+
# clean_up_processes(session_id)
|
531 |
+
queue = start_process(session_id)
|
532 |
+
result_queue = user_processes[session_id]["result_queue"]
|
533 |
+
point = np.array([[evt.index[0], evt.index[1]]], dtype=np.float32)
|
534 |
+
queue.put({"command": "sam_click", "frame_num": frame_num, "point_mode": point_mode, "click_stack": click_stack, "ann_obj_id": ann_obj_id, "point": point})
|
535 |
+
result = result_queue.get()
|
536 |
+
input_first_frame = result.get("input_first_frame")
|
537 |
+
drawing_board = result.get("drawing_board")
|
538 |
+
last_draw = result.get("last_draw")
|
539 |
+
return input_first_frame, drawing_board, last_draw
|
540 |
+
|
541 |
+
def handle_increment_ann_obj_id(session_id, ann_obj_id):
|
542 |
+
# clean_up_processes(session_id)
|
543 |
+
queue = start_process(session_id)
|
544 |
+
result_queue = user_processes[session_id]["result_queue"]
|
545 |
+
queue.put({"command": "increment_ann_obj_id", "ann_obj_id": ann_obj_id})
|
546 |
+
result = result_queue.get()
|
547 |
+
ann_obj_id = result.get("ann_obj_id")
|
548 |
+
return ann_obj_id
|
549 |
+
|
550 |
+
def handle_drawing_board_get_input_first_frame(session_id, input_first_frame):
|
551 |
+
# clean_up_processes(session_id)
|
552 |
+
queue = start_process(session_id)
|
553 |
+
result_queue = user_processes[session_id]["result_queue"]
|
554 |
+
queue.put({"command": "drawing_board_get_input_first_frame", "input_first_frame": input_first_frame})
|
555 |
+
result = result_queue.get()
|
556 |
+
input_first_frame = result.get("input_first_frame")
|
557 |
+
return input_first_frame
|
558 |
+
|
559 |
+
def handle_reset(session_id):
|
560 |
+
# clean_up_processes(session_id)
|
561 |
+
queue = start_process(session_id)
|
562 |
+
result_queue = user_processes[session_id]["result_queue"]
|
563 |
+
queue.put({"command": "reset"})
|
564 |
+
result = result_queue.get()
|
565 |
+
click_stack = result.get("click_stack")
|
566 |
+
input_first_frame = result.get("input_first_frame")
|
567 |
+
drawing_board = result.get("drawing_board")
|
568 |
+
frame_per = result.get("frame_per")
|
569 |
+
output_video = result.get("output_video")
|
570 |
+
output_mp4 = result.get("output_mp4")
|
571 |
+
output_mask = result.get("output_mask")
|
572 |
+
ann_obj_id = result.get("ann_obj_id")
|
573 |
+
return click_stack, input_first_frame, drawing_board, frame_per, output_video, output_mp4, output_mask, ann_obj_id
|
574 |
+
|
575 |
+
def handle_show_res_by_slider(session_id, frame_per, click_stack):
|
576 |
+
# clean_up_processes(session_id)
|
577 |
+
queue = start_process(session_id)
|
578 |
+
result_queue = user_processes[session_id]["result_queue"]
|
579 |
+
queue.put({"command": "show_res_by_slider", "frame_per": frame_per, "click_stack": click_stack})
|
580 |
+
result = result_queue.get()
|
581 |
+
input_first_frame = result.get("input_first_frame")
|
582 |
+
drawing_board = result.get("drawing_board")
|
583 |
+
frame_num = result.get("frame_num")
|
584 |
+
return input_first_frame, drawing_board, frame_num
|
585 |
+
|
586 |
+
def handle_tracking_objects(session_id, frame_num, input_video):
|
587 |
+
# clean_up_processes(session_id)
|
588 |
+
queue = start_process(session_id)
|
589 |
+
result_queue = user_processes[session_id]["result_queue"]
|
590 |
+
queue.put({"command": "tracking_objects", "frame_num": frame_num, "input_video": input_video})
|
591 |
+
result = result_queue.get()
|
592 |
+
input_first_frame = result.get("input_first_frame")
|
593 |
+
drawing_board = result.get("drawing_board")
|
594 |
+
output_video = result.get("output_video")
|
595 |
+
output_mp4 = result.get("output_mp4")
|
596 |
+
output_mask = result.get("output_mask")
|
597 |
+
return input_first_frame, drawing_board, output_video, output_mp4, output_mask
|
598 |
|
599 |
##########################################################
|
600 |
###################### Front-end ########################
|
|
|
608 |
"""
|
609 |
|
610 |
app = gr.Blocks(css=css)
|
|
|
611 |
with app:
|
612 |
+
session_id = gr.State()
|
613 |
+
app.load(extract_session_id_from_request, None, session_id)
|
614 |
gr.Markdown(
|
615 |
'''
|
616 |
<div style="text-align:center; margin-bottom:20px;">
|
|
|
673 |
'''
|
674 |
)
|
675 |
|
676 |
+
click_stack = gr.State(({}, {}))
|
677 |
frame_num = gr.State(value=(int(0)))
|
678 |
ann_obj_id = gr.State(value=(int(0)))
|
679 |
last_draw = gr.State(None)
|
|
|
683 |
with gr.Row():
|
684 |
tab_video_input = gr.Tab(label="Video input")
|
685 |
with tab_video_input:
|
686 |
+
input_video = gr.Video(label='Input video', type=["mp4", "mov", "avi"], elem_id="input_output_video")
|
687 |
with gr.Row():
|
688 |
checkpoint = gr.Dropdown(label="Model Size", choices=["tiny", "small", "base-plus", "large"], value="tiny")
|
689 |
scale_slider = gr.Slider(
|
|
|
708 |
|
709 |
tab_click = gr.Tab(label="Point Prompt")
|
710 |
with tab_click:
|
711 |
+
input_first_frame = gr.Image(label='Segment result of first frame',interactive=True).style(height=550)
|
712 |
with gr.Row():
|
713 |
point_mode = gr.Radio(
|
714 |
choices=["Positive", "Negative"],
|
|
|
781 |
|
782 |
# listen to the preprocess button click to get the first frame of video with scaling
|
783 |
preprocess_button.click(
|
784 |
+
fn=handle_get_meta_from_video,
|
785 |
inputs=[
|
786 |
+
session_id,
|
787 |
input_video,
|
788 |
scale_slider,
|
789 |
+
checkpoint
|
790 |
],
|
791 |
outputs=[
|
792 |
+
input_first_frame, drawing_board, frame_per, output_video, output_mp4, output_mask, ann_obj_id
|
793 |
]
|
794 |
)
|
795 |
|
796 |
frame_per.release(
|
797 |
+
fn=handle_show_res_by_slider,
|
798 |
inputs=[
|
799 |
+
session_id, frame_per, click_stack
|
800 |
],
|
801 |
outputs=[
|
802 |
input_first_frame, drawing_board, frame_num
|
|
|
805 |
|
806 |
# Interactively modify the mask acc click
|
807 |
input_first_frame.select(
|
808 |
+
fn=handle_sam_click,
|
809 |
inputs=[
|
810 |
+
session_id, frame_num, point_mode, click_stack, ann_obj_id
|
811 |
],
|
812 |
outputs=[
|
813 |
input_first_frame, drawing_board, click_stack
|
|
|
816 |
|
817 |
# Track object in video
|
818 |
track_for_video.click(
|
819 |
+
fn=handle_tracking_objects,
|
820 |
inputs=[
|
821 |
+
session_id,
|
|
|
822 |
frame_num,
|
823 |
input_video,
|
824 |
],
|
|
|
832 |
)
|
833 |
|
834 |
reset_button.click(
|
835 |
+
fn=handle_reset,
|
836 |
+
inputs=[session_id],
|
837 |
outputs=[
|
838 |
click_stack, input_first_frame, drawing_board, frame_per, output_video, output_mp4, output_mask, ann_obj_id
|
839 |
]
|
840 |
)
|
841 |
|
842 |
new_object_button.click(
|
843 |
+
fn=handle_increment_ann_obj_id,
|
844 |
inputs=[
|
845 |
+
session_id, ann_obj_id
|
846 |
],
|
847 |
outputs=[
|
848 |
ann_obj_id
|
|
|
850 |
)
|
851 |
|
852 |
tab_stroke.select(
|
853 |
+
fn=handle_drawing_board_get_input_first_frame,
|
854 |
+
inputs=[session_id, input_first_frame],
|
855 |
outputs=[drawing_board,],
|
856 |
)
|
857 |
|
858 |
seg_acc_stroke.click(
|
859 |
+
fn=handle_sam_stroke,
|
860 |
inputs=[
|
861 |
+
session_id, drawing_board, last_draw, frame_num, ann_obj_id
|
862 |
],
|
863 |
outputs=[
|
864 |
+
input_first_frame, drawing_board, last_draw
|
865 |
]
|
866 |
)
|
867 |
|
868 |
input_video.change(
|
869 |
+
fn=handle_extract_video_info,
|
870 |
+
inputs=[session_id, input_video],
|
871 |
+
outputs=[scale_slider, frame_per, input_first_frame, drawing_board, output_video, output_mp4, output_mask]
|
872 |
)
|
873 |
|
874 |
app.queue(concurrency_count=1)
|
875 |
+
app.launch(debug=True, enable_queue=True, share=False)
|
876 |
|
877 |
if __name__ == "__main__":
|
878 |
+
mp.set_start_method("spawn")
|
879 |
+
monitor_thread = threading.Thread(target=monitor_and_cleanup_processes)
|
880 |
+
monitor_thread.daemon = True
|
881 |
+
monitor_thread.start()
|
882 |
seg_track_app()
|