Spaces:
Running
Running
File size: 19,395 Bytes
1e96bca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
import io
import os
import shutil
import base64
import gradio as gr
from PIL import Image, ImageDraw
from MobileAgent.text_localization import ocr
from MobileAgent.icon_localization import det
from MobileAgent.local_server import mobile_agent_infer
from modelscope import snapshot_download
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
chatbot_css = """
<style>
.chat-container {
display: flex;
flex-direction: column;
overflow-y: auto;
max-height: 630px;
margin: 10px;
}
.user-message, .bot-message {
margin: 5px;
padding: 10px;
border-radius: 10px;
}
.user-message {
text-align: right;
background-color: #7B68EE;
color: white;
align-self: flex-end;
}
.bot-message {
text-align: left;
background-color: #ADD8E6;
color: black;
align-self: flex-start;
}
.user-image {
text-align: right;
align-self: flex-end;
max-width: 150px;
max-height: 300px;
}
.bot-image {
text-align: left;
align-self: flex-start;
max-width: 200px;
max-height: 400px;
}
</style>
"""
temp_file = "temp"
screenshot = "screenshot"
cache = "cache"
if not os.path.exists(temp_file):
os.mkdir(temp_file)
if not os.path.exists(screenshot):
os.mkdir(screenshot)
if not os.path.exists(cache):
os.mkdir(cache)
groundingdino_dir = snapshot_download('AI-ModelScope/GroundingDINO', revision='v1.0.0')
groundingdino_model = pipeline('grounding-dino-task', model=groundingdino_dir)
ocr_detection = pipeline(Tasks.ocr_detection, model='damo/cv_resnet18_ocr-detection-line-level_damo')
ocr_recognition = pipeline(Tasks.ocr_recognition, model='damo/cv_convnextTiny_ocr-recognition-document_damo')
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
def get_all_files_in_folder(folder_path):
file_list = []
for file_name in os.listdir(folder_path):
file_list.append(file_name)
return file_list
def crop(image, box, i):
image = Image.open(image)
x1, y1, x2, y2 = int(box[0]), int(box[1]), int(box[2]), int(box[3])
if x1 >= x2-10 or y1 >= y2-10:
return
cropped_image = image.crop((x1, y1, x2, y2))
cropped_image.save(f"./temp/{i}.png", format="PNG")
def merge_text_blocks(text_list, coordinates_list):
merged_text_blocks = []
merged_coordinates = []
sorted_indices = sorted(range(len(coordinates_list)), key=lambda k: (coordinates_list[k][1], coordinates_list[k][0]))
sorted_text_list = [text_list[i] for i in sorted_indices]
sorted_coordinates_list = [coordinates_list[i] for i in sorted_indices]
num_blocks = len(sorted_text_list)
merge = [False] * num_blocks
for i in range(num_blocks):
if merge[i]:
continue
anchor = i
group_text = [sorted_text_list[anchor]]
group_coordinates = [sorted_coordinates_list[anchor]]
for j in range(i+1, num_blocks):
if merge[j]:
continue
if abs(sorted_coordinates_list[anchor][0] - sorted_coordinates_list[j][0]) < 10 and \
sorted_coordinates_list[j][1] - sorted_coordinates_list[anchor][3] >= -10 and sorted_coordinates_list[j][1] - sorted_coordinates_list[anchor][3] < 30 and \
abs(sorted_coordinates_list[anchor][3] - sorted_coordinates_list[anchor][1] - (sorted_coordinates_list[j][3] - sorted_coordinates_list[j][1])) < 10:
group_text.append(sorted_text_list[j])
group_coordinates.append(sorted_coordinates_list[j])
merge[anchor] = True
anchor = j
merge[anchor] = True
merged_text = "\n".join(group_text)
min_x1 = min(group_coordinates, key=lambda x: x[0])[0]
min_y1 = min(group_coordinates, key=lambda x: x[1])[1]
max_x2 = max(group_coordinates, key=lambda x: x[2])[2]
max_y2 = max(group_coordinates, key=lambda x: x[3])[3]
merged_text_blocks.append(merged_text)
merged_coordinates.append([min_x1, min_y1, max_x2, max_y2])
return merged_text_blocks, merged_coordinates
def get_perception_infos(screenshot_file):
width, height = Image.open(screenshot_file).size
text, coordinates = ocr(screenshot_file, ocr_detection, ocr_recognition)
text, coordinates = merge_text_blocks(text, coordinates)
perception_infos = []
for i in range(len(coordinates)):
perception_info = {"text": "text: " + text[i], "coordinates": coordinates[i]}
perception_infos.append(perception_info)
coordinates = det(screenshot_file, "icon", groundingdino_model)
for i in range(len(coordinates)):
perception_info = {"text": "icon", "coordinates": coordinates[i]}
perception_infos.append(perception_info)
image_box = []
image_id = []
for i in range(len(perception_infos)):
if perception_infos[i]['text'] == 'icon':
image_box.append(perception_infos[i]['coordinates'])
image_id.append(i)
for i in range(len(image_box)):
crop(screenshot_file, image_box[i], image_id[i])
images = get_all_files_in_folder(temp_file)
if len(images) > 0:
images = sorted(images, key=lambda x: int(x.split('/')[-1].split('.')[0]))
image_id = [int(image.split('/')[-1].split('.')[0]) for image in images]
icon_map = {}
prompt = 'This image is an icon from a phone screen. Please briefly describe the shape and color of this icon in one sentence.'
string_image = []
for i in range(len(images)):
image_path = os.path.join(temp_file, images[i])
string_image.append({"image_name": images[i], "image_file": encode_image(image_path)})
query_data = {"task": "caption", "images": string_image, "query": prompt}
response_query = mobile_agent_infer(query_data)
icon_map = response_query["icon_map"]
for i, j in zip(image_id, range(1, len(image_id)+1)):
if icon_map.get(str(j)):
perception_infos[i]['text'] = "icon: " + icon_map[str(j)]
for i in range(len(perception_infos)):
perception_infos[i]['coordinates'] = [int((perception_infos[i]['coordinates'][0]+perception_infos[i]['coordinates'][2])/2), int((perception_infos[i]['coordinates'][1]+perception_infos[i]['coordinates'][3])/2)]
return perception_infos, width, height
def image_to_base64(image):
buffered = io.BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
img_html = f'<img src="data:image/png;base64,{img_str}" />'
return img_html
def chatbot(image, instruction, add_info, history, chat_log):
if history == {}:
thought_history = []
summary_history = []
action_history = []
summary = ""
action = ""
completed_requirements = ""
memory = ""
insight = ""
error_flag = False
user_msg = "<div class='user-message'>{}</div>".format(instruction)
else:
thought_history = history["thought_history"]
summary_history = history["summary_history"]
action_history = history["action_history"]
summary = history["summary"]
action = history["action"]
completed_requirements = history["completed_requirements"]
memory = history["memory"][0]
insight = history["insight"]
error_flag = history["error_flag"]
user_msg = "<div class='user-message'>{}</div>".format("I have uploaded the screenshot. Please continue operating.")
images = get_all_files_in_folder(cache)
if len(images) > 0 and len(images) <= 100:
images = sorted(images, key=lambda x: int(x.split('/')[-1].split('.')[0]))
image_id = [int(image.split('/')[-1].split('.')[0]) for image in images]
cur_image_id = image_id[-1] + 1
elif len(images) > 100:
images = sorted(images, key=lambda x: int(x.split('/')[-1].split('.')[0]))
image_id = [int(image.split('/')[-1].split('.')[0]) for image in images]
cur_image_id = image_id[-1] + 1
os.remove(os.path.join(cache, str(image_id[0])+".png"))
else:
cur_image_id = 1
image.save(os.path.join(cache, str(cur_image_id) + ".png"), format="PNG")
screenshot_file = os.path.join(cache, str(cur_image_id) + ".png")
perception_infos, width, height = get_perception_infos(screenshot_file)
shutil.rmtree(temp_file)
os.mkdir(temp_file)
local_screenshot_file = encode_image(screenshot_file)
query_data = {
"task": "decision",
"screenshot_file": local_screenshot_file,
"instruction": instruction,
"perception_infos": perception_infos,
"width": width,
"height": height,
"summary_history": summary_history,
"action_history": action_history,
"summary": summary,
"action": action,
"add_info": add_info,
"error_flag": error_flag,
"completed_requirements": completed_requirements,
"memory": memory,
"memory_switch": True,
"insight": insight
}
response_query = mobile_agent_infer(query_data)
output_action = response_query["decision"]
output_memory = response_query["memory"]
if output_action == "No token":
bot_response = ["<div class='bot-message'>{}</div>".format("Sorry, the resources can be exhausted today.")]
chat_html = "<div class='chat-container'>{}</div>".format("".join(bot_response))
return chatbot_css + chat_html, history, chat_log
thought = output_action.split("### Thought ###")[-1].split("### Action ###")[0].replace("\n", " ").replace(":", "").replace(" ", " ").strip()
summary = output_action.split("### Operation ###")[-1].replace("\n", " ").replace(" ", " ").strip()
action = output_action.split("### Action ###")[-1].split("### Operation ###")[0].replace("\n", " ").replace(" ", " ").strip()
output_memory = output_memory.split("### Important content ###")[-1].split("\n\n")[0].strip() + "\n"
if "None" not in output_memory and output_memory not in memory:
memory += output_memory
if "Open app" in action:
bot_response = "Please click the red circle and upload the current screenshot again."
app_name = action.split("(")[-1].split(")")[0]
text, coordinate = ocr(screenshot_file, ocr_detection, ocr_recognition)
for ti in range(len(text)):
if app_name == text[ti]:
name_coordinate = [int((coordinate[ti][0] + coordinate[ti][2])/2), int((coordinate[ti][1] + coordinate[ti][3])/2)]
x, y = name_coordinate[0], name_coordinate[1]
radius = 75
draw = ImageDraw.Draw(image)
draw.ellipse([x - radius, y - radius, x + radius, y + radius], outline='red', width=10)
break
elif "Tap" in action:
bot_response = "Please click the red circle and upload the current screenshot again."
coordinate = action.split("(")[-1].split(")")[0].split(", ")
x, y = int(coordinate[0]), int(coordinate[1])
radius = 75
draw = ImageDraw.Draw(image)
draw.ellipse([x - radius, y - radius, x + radius, y + radius], outline='red', width=10)
elif "Swipe" in action:
bot_response = "Please slide from red circle to blue circle and upload the current screenshot again."
coordinate1 = action.split("Swipe (")[-1].split("), (")[0].split(", ")
coordinate2 = action.split("), (")[-1].split(")")[0].split(", ")
x1, y1 = int(coordinate1[0]), int(coordinate1[1])
x2, y2 = int(coordinate2[0]), int(coordinate2[1])
radius = 75
draw = ImageDraw.Draw(image)
draw.ellipse([x1 - radius, y1 - radius, x1 + radius, y1 + radius], outline='red', width=10)
draw.ellipse([x2 - radius, y2 - radius, x2 + radius, y2 + radius], outline='blue', width=10)
elif "Type" in action:
if "(text)" not in action:
text = action.split("(")[-1].split(")")[0]
else:
text = action.split(" \"")[-1].split("\"")[0]
bot_response = f"Please type the \"{text}\" and upload the current screenshot again."
elif "Back" in action:
bot_response = f"Please back to previous page and upload the current screenshot again."
elif "Home" in action:
bot_response = f"Please back to home page and upload the current screenshot again."
elif "Stop" in action:
bot_response = f"Task completed."
bot_text1 = "<div class='bot-message'>{}</div>".format("### Decision ###")
bot_thought = "<div class='bot-message'>{}</div>".format("Thought: " + thought)
bot_action = "<div class='bot-message'>{}</div>".format("Action: " + action)
bot_operation = "<div class='bot-message'>{}</div>".format("Operation: " + summary)
bot_text2 = "<div class='bot-message'>{}</div>".format("### Memory ###")
bot_memory = "<div class='bot-message'>{}</div>".format(output_memory)
bot_response = "<div class='bot-message'>{}</div>".format(bot_response)
if image is not None:
bot_img_html = image_to_base64(image)
bot_response = "<div class='bot-image'>{}</div>".format(bot_img_html) + bot_response
chat_log.append(user_msg)
thought_history.append(thought)
summary_history.append(summary)
action_history.append(action)
history["thought_history"] = thought_history
history["summary_history"] = summary_history
history["action_history"] = action_history
history["summary"] = summary
history["action"] = action
history["memory"] = memory,
history["memory_switch"] = True,
history["insight"] = insight
history["error_flag"] = error_flag
query_data = {
"task": "planning",
"instruction": instruction,
"thought_history": thought_history,
"summary_history": summary_history,
"action_history": action_history,
"completed_requirements": "",
"add_info": add_info
}
response_query = mobile_agent_infer(query_data)
output_planning = response_query["planning"]
if output_planning == "No token":
bot_response = ["<div class='bot-message'>{}</div>".format("Sorry, the resources can be exhausted today.")]
chat_html = "<div class='chat-container'>{}</div>".format("".join(bot_response))
return chatbot_css + chat_html, history, chat_log
output_planning = output_planning.split("### Completed contents ###")[-1].replace("\n", " ").strip()
history["completed_requirements"] = output_planning
bot_text3 = "<div class='bot-message'>{}</div>".format("### Planning ###")
output_planning = "<div class='bot-message'>{}</div>".format(output_planning)
chat_log.append(bot_text3)
chat_log.append(output_planning)
chat_log.append(bot_text1)
chat_log.append(bot_thought)
chat_log.append(bot_action)
chat_log.append(bot_operation)
chat_log.append(bot_text2)
chat_log.append(bot_memory)
chat_log.append(bot_response)
chat_html = "<div class='chat-container'>{}</div>".format("".join(chat_log))
return chatbot_css + chat_html, history, chat_log
def lock_input(instruction):
return gr.update(value=instruction, interactive=False), gr.update(value=None)
def reset_demo():
return gr.update(value="", interactive=True), gr.update(value="If you want to tap an icon of an app, use the action \"Open app\"", interactive=True), "<div class='chat-container'></div>", {}, []
tos_markdown = ("""<div style="display:flex; gap: 0.25rem;" align="center">
<a href='https://github.com/X-PLUG/MobileAgent'><img src='https://img.shields.io/badge/Github-Code-blue'></a>
<a href="https://arxiv.org/abs/2406.01014"><img src="https://img.shields.io/badge/Arxiv-2406.01014-red"></a>
<a href='https://github.com/X-PLUG/MobileAgent/stargazers'><img src='https://img.shields.io/github/stars/X-PLUG/MobileAgent.svg?style=social'></a>
</div>
If you like our project, please give us a star ✨ on Github for latest update.
**Terms of use**
1. Input your instruction in \"Instruction\", for example \"Turn on the dark mode\".
2. You can input helpful operation knowledge in \"Knowledge\".
3. Click \"Submit\" to get the operation. You need to operate your mobile device according to the operation and then upload the screenshot after your operation.
4. The 5 cases in \"Examples\" are a complete flow. Click and submit from top to bottom to experience.
5. Due to limited resources, each operation may take a long time, please be patient and wait.
**使用说明**
1. 在“Instruction”中输入你的指令,例如“打开深色模式”。
2. 你可以在“Knowledge”中输入帮助性的操作知识。
3. 点击“Submit”来获得操作。你需要根据输出来操作手机,并且上传操作后的截图。
4. “Example”中的5个例子是一个任务。从上到下点击它们并且点击“Submit”来体验。
5. 由于资源有限,每次操作的时间会比较长,请耐心等待。""")
title_markdowm = ("""# Mobile-Agent-v2: Mobile Device Operation Assistant with Effective Navigation via Multi-Agent Collaboration""")
instruction_input = gr.Textbox(label="Instruction", placeholder="Input your instruction")
knowledge_input = gr.Textbox(label="Knowledge", placeholder="Input your knowledge", value="If you want to tap an icon of an app, use the action \"Open app\"")
with gr.Blocks() as demo:
history_state = gr.State(value={})
history_output = gr.State(value=[])
with gr.Row():
gr.Markdown(title_markdowm)
with gr.Row():
with gr.Column(scale=5):
gr.Markdown(tos_markdown)
with gr.Row():
image_input = gr.Image(label="Screenshot", type="pil", height=550, width=230)
gr.Examples(examples=[
["./example/example_1.jpg", "Turn on the dark mode"],
["./example/example_2.jpg", "Turn on the dark mode"],
["./example/example_3.jpg", "Turn on the dark mode"],
["./example/example_4.jpg", "Turn on the dark mode"],
["./example/example_5.jpg", "Turn on the dark mode"],
], inputs=[image_input, instruction_input, knowledge_input])
with gr.Column(scale=6):
instruction_input.render()
knowledge_input.render()
with gr.Row():
start_button = gr.Button("Submit")
clear_button = gr.Button("Clear")
output_component = gr.HTML(label="Chat history", value="<div class='chat-container'></div>")
start_button.click(
fn=lambda image, instruction, add_info, history, output: chatbot(image, instruction, add_info, history, output),
inputs=[image_input, instruction_input, knowledge_input, history_state, history_output],
outputs=[output_component, history_state, history_output]
)
clear_button.click(
fn=reset_demo,
inputs=[],
outputs=[instruction_input, knowledge_input, output_component, history_state, history_output]
)
demo.queue().launch(share=True) |