Spaces:
Sleeping
Sleeping
File size: 20,945 Bytes
17b7b8e cdccdd2 17b7b8e d1e13bc 17b7b8e cdccdd2 17b7b8e cdccdd2 17b7b8e d1e13bc 17b7b8e cdccdd2 17b7b8e cdccdd2 17b7b8e d1e13bc 17b7b8e d1e13bc 17b7b8e d1e13bc 17b7b8e b811177 17b7b8e cdccdd2 17b7b8e c339b31 17b7b8e 6da6c93 cdccdd2 17b7b8e 7bf5d85 17b7b8e ef7fe6c 17b7b8e 429c56d 17b7b8e db7df49 cdccdd2 17b7b8e 7bf5d85 17b7b8e ef7fe6c 17b7b8e 429c56d 17b7b8e cdccdd2 17b7b8e 6da6c93 cdccdd2 17b7b8e 7bf5d85 17b7b8e ef7fe6c 17b7b8e 1f88289 429c56d 6da6c93 1f88289 e9e7fe2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
# --------------------------------------------------------
# PersonalizeSAM -- Personalize Segment Anything Model with One Shot
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
from PIL import Image
import torch
import torch.nn as nn
import gradio as gr
import numpy as np
from torch.nn import functional as F
from show import *
from per_segment_anything import sam_model_registry, SamPredictor
class Mask_Weights(nn.Module):
def __init__(self):
super().__init__()
self.weights = nn.Parameter(torch.ones(2, 1, requires_grad=True) / 3)
def point_selection(mask_sim, topk=1):
# Top-1 point selection
w, h = mask_sim.shape
topk_xy = mask_sim.flatten(0).topk(topk)[1]
topk_x = (topk_xy // h).unsqueeze(0)
topk_y = (topk_xy - topk_x * h)
topk_xy = torch.cat((topk_y, topk_x), dim=0).permute(1, 0)
topk_label = np.array([1] * topk)
topk_xy = topk_xy.cpu().numpy()
# Top-last point selection
last_xy = mask_sim.flatten(0).topk(topk, largest=False)[1]
last_x = (last_xy // h).unsqueeze(0)
last_y = (last_xy - last_x * h)
last_xy = torch.cat((last_y, last_x), dim=0).permute(1, 0)
last_label = np.array([0] * topk)
last_xy = last_xy.cpu().numpy()
return topk_xy, topk_label, last_xy, last_label
def calculate_dice_loss(inputs, targets, num_masks = 1):
"""
Compute the DICE loss, similar to generalized IOU for masks
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
"""
inputs = inputs.sigmoid()
inputs = inputs.flatten(1)
numerator = 2 * (inputs * targets).sum(-1)
denominator = inputs.sum(-1) + targets.sum(-1)
loss = 1 - (numerator + 1) / (denominator + 1)
return loss.sum() / num_masks
def calculate_sigmoid_focal_loss(inputs, targets, num_masks = 1, alpha: float = 0.25, gamma: float = 2):
"""
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
alpha: (optional) Weighting factor in range (0,1) to balance
positive vs negative examples. Default = -1 (no weighting).
gamma: Exponent of the modulating factor (1 - p_t) to
balance easy vs hard examples.
Returns:
Loss tensor
"""
prob = inputs.sigmoid()
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
p_t = prob * targets + (1 - prob) * (1 - targets)
loss = ce_loss * ((1 - p_t) ** gamma)
if alpha >= 0:
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
loss = alpha_t * loss
return loss.mean(1).sum() / num_masks
def inference(ic_image, ic_mask, image1, image2):
# in context image and mask
ic_image = np.array(ic_image.convert("RGB"))
ic_mask = np.array(ic_mask.convert("RGB"))
sam_type, sam_ckpt = 'vit_h', 'sam_vit_h_4b8939.pth'
sam = sam_model_registry[sam_type](checkpoint=sam_ckpt).cuda()
# sam = sam_model_registry[sam_type](checkpoint=sam_ckpt)
predictor = SamPredictor(sam)
# Image features encoding
ref_mask = predictor.set_image(ic_image, ic_mask)
ref_feat = predictor.features.squeeze().permute(1, 2, 0)
ref_mask = F.interpolate(ref_mask, size=ref_feat.shape[0: 2], mode="bilinear")
ref_mask = ref_mask.squeeze()[0]
# Target feature extraction
print("======> Obtain Location Prior" )
target_feat = ref_feat[ref_mask > 0]
target_embedding = target_feat.mean(0).unsqueeze(0)
target_feat = target_embedding / target_embedding.norm(dim=-1, keepdim=True)
target_embedding = target_embedding.unsqueeze(0)
output_image = []
for test_image in [image1, image2]:
print("======> Testing Image" )
test_image = np.array(test_image.convert("RGB"))
# Image feature encoding
predictor.set_image(test_image)
test_feat = predictor.features.squeeze()
# Cosine similarity
C, h, w = test_feat.shape
test_feat = test_feat / test_feat.norm(dim=0, keepdim=True)
test_feat = test_feat.reshape(C, h * w)
sim = target_feat @ test_feat
sim = sim.reshape(1, 1, h, w)
sim = F.interpolate(sim, scale_factor=4, mode="bilinear")
sim = predictor.model.postprocess_masks(
sim,
input_size=predictor.input_size,
original_size=predictor.original_size).squeeze()
# Positive-negative location prior
topk_xy_i, topk_label_i, last_xy_i, last_label_i = point_selection(sim, topk=1)
topk_xy = np.concatenate([topk_xy_i, last_xy_i], axis=0)
topk_label = np.concatenate([topk_label_i, last_label_i], axis=0)
# Obtain the target guidance for cross-attention layers
sim = (sim - sim.mean()) / torch.std(sim)
sim = F.interpolate(sim.unsqueeze(0).unsqueeze(0), size=(64, 64), mode="bilinear")
attn_sim = sim.sigmoid_().unsqueeze(0).flatten(3)
# First-step prediction
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
multimask_output=False,
attn_sim=attn_sim, # Target-guided Attention
target_embedding=target_embedding # Target-semantic Prompting
)
best_idx = 0
# Cascaded Post-refinement-1
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
mask_input=logits[best_idx: best_idx + 1, :, :],
multimask_output=True)
best_idx = np.argmax(scores)
# Cascaded Post-refinement-2
y, x = np.nonzero(masks[best_idx])
x_min = x.min()
x_max = x.max()
y_min = y.min()
y_max = y.max()
input_box = np.array([x_min, y_min, x_max, y_max])
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
box=input_box[None, :],
mask_input=logits[best_idx: best_idx + 1, :, :],
multimask_output=True)
best_idx = np.argmax(scores)
final_mask = masks[best_idx]
mask_colors = np.zeros((final_mask.shape[0], final_mask.shape[1], 3), dtype=np.uint8)
mask_colors[final_mask, :] = np.array([[128, 0, 0]])
output_image.append(Image.fromarray((mask_colors * 0.6 + test_image * 0.4).astype('uint8'), 'RGB'))
return output_image[0].resize((224, 224)), output_image[1].resize((224, 224))
def inference_scribble(image, image1, image2):
# in context image and mask
ic_image = image["image"]
ic_mask = image["mask"]
ic_image = np.array(ic_image.convert("RGB"))
ic_mask = np.array(ic_mask.convert("RGB"))
sam_type, sam_ckpt = 'vit_h', 'sam_vit_h_4b8939.pth'
sam = sam_model_registry[sam_type](checkpoint=sam_ckpt).cuda()
# sam = sam_model_registry[sam_type](checkpoint=sam_ckpt)
predictor = SamPredictor(sam)
# Image features encoding
ref_mask = predictor.set_image(ic_image, ic_mask)
ref_feat = predictor.features.squeeze().permute(1, 2, 0)
ref_mask = F.interpolate(ref_mask, size=ref_feat.shape[0: 2], mode="bilinear")
ref_mask = ref_mask.squeeze()[0]
# Target feature extraction
print("======> Obtain Location Prior" )
target_feat = ref_feat[ref_mask > 0]
target_embedding = target_feat.mean(0).unsqueeze(0)
target_feat = target_embedding / target_embedding.norm(dim=-1, keepdim=True)
target_embedding = target_embedding.unsqueeze(0)
output_image = []
for test_image in [image1, image2]:
print("======> Testing Image" )
test_image = np.array(test_image.convert("RGB"))
# Image feature encoding
predictor.set_image(test_image)
test_feat = predictor.features.squeeze()
# Cosine similarity
C, h, w = test_feat.shape
test_feat = test_feat / test_feat.norm(dim=0, keepdim=True)
test_feat = test_feat.reshape(C, h * w)
sim = target_feat @ test_feat
sim = sim.reshape(1, 1, h, w)
sim = F.interpolate(sim, scale_factor=4, mode="bilinear")
sim = predictor.model.postprocess_masks(
sim,
input_size=predictor.input_size,
original_size=predictor.original_size).squeeze()
# Positive-negative location prior
topk_xy_i, topk_label_i, last_xy_i, last_label_i = point_selection(sim, topk=1)
topk_xy = np.concatenate([topk_xy_i, last_xy_i], axis=0)
topk_label = np.concatenate([topk_label_i, last_label_i], axis=0)
# Obtain the target guidance for cross-attention layers
sim = (sim - sim.mean()) / torch.std(sim)
sim = F.interpolate(sim.unsqueeze(0).unsqueeze(0), size=(64, 64), mode="bilinear")
attn_sim = sim.sigmoid_().unsqueeze(0).flatten(3)
# First-step prediction
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
multimask_output=False,
attn_sim=attn_sim, # Target-guided Attention
target_embedding=target_embedding # Target-semantic Prompting
)
best_idx = 0
# Cascaded Post-refinement-1
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
mask_input=logits[best_idx: best_idx + 1, :, :],
multimask_output=True)
best_idx = np.argmax(scores)
# Cascaded Post-refinement-2
y, x = np.nonzero(masks[best_idx])
x_min = x.min()
x_max = x.max()
y_min = y.min()
y_max = y.max()
input_box = np.array([x_min, y_min, x_max, y_max])
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
box=input_box[None, :],
mask_input=logits[best_idx: best_idx + 1, :, :],
multimask_output=True)
best_idx = np.argmax(scores)
final_mask = masks[best_idx]
mask_colors = np.zeros((final_mask.shape[0], final_mask.shape[1], 3), dtype=np.uint8)
mask_colors[final_mask, :] = np.array([[128, 0, 0]])
output_image.append(Image.fromarray((mask_colors * 0.6 + test_image * 0.4).astype('uint8'), 'RGB'))
return output_image[0].resize((224, 224)), output_image[1].resize((224, 224))
def inference_finetune(ic_image, ic_mask, image1, image2):
# in context image and mask
ic_image = np.array(ic_image.convert("RGB"))
ic_mask = np.array(ic_mask.convert("RGB"))
gt_mask = torch.tensor(ic_mask)[:, :, 0] > 0
gt_mask = gt_mask.float().unsqueeze(0).flatten(1).cuda()
# gt_mask = gt_mask.float().unsqueeze(0).flatten(1)
sam_type, sam_ckpt = 'vit_h', 'sam_vit_h_4b8939.pth'
sam = sam_model_registry[sam_type](checkpoint=sam_ckpt).cuda()
# sam = sam_model_registry[sam_type](checkpoint=sam_ckpt)
for name, param in sam.named_parameters():
param.requires_grad = False
predictor = SamPredictor(sam)
print("======> Obtain Self Location Prior" )
# Image features encoding
ref_mask = predictor.set_image(ic_image, ic_mask)
ref_feat = predictor.features.squeeze().permute(1, 2, 0)
ref_mask = F.interpolate(ref_mask, size=ref_feat.shape[0: 2], mode="bilinear")
ref_mask = ref_mask.squeeze()[0]
# Target feature extraction
target_feat = ref_feat[ref_mask > 0]
target_feat_mean = target_feat.mean(0)
target_feat_max = torch.max(target_feat, dim=0)[0]
target_feat = (target_feat_max / 2 + target_feat_mean / 2).unsqueeze(0)
# Cosine similarity
h, w, C = ref_feat.shape
target_feat = target_feat / target_feat.norm(dim=-1, keepdim=True)
ref_feat = ref_feat / ref_feat.norm(dim=-1, keepdim=True)
ref_feat = ref_feat.permute(2, 0, 1).reshape(C, h * w)
sim = target_feat @ ref_feat
sim = sim.reshape(1, 1, h, w)
sim = F.interpolate(sim, scale_factor=4, mode="bilinear")
sim = predictor.model.postprocess_masks(
sim,
input_size=predictor.input_size,
original_size=predictor.original_size).squeeze()
# Positive location prior
topk_xy, topk_label, _, _ = point_selection(sim, topk=1)
print('======> Start Training')
# Learnable mask weights
mask_weights = Mask_Weights().cuda()
# mask_weights = Mask_Weights()
mask_weights.train()
train_epoch = 100
optimizer = torch.optim.AdamW(mask_weights.parameters(), lr=1e-3, eps=1e-4)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, train_epoch)
for train_idx in range(train_epoch):
# Run the decoder
masks, scores, logits, logits_high = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
multimask_output=True)
logits_high = logits_high.flatten(1)
# Weighted sum three-scale masks
weights = torch.cat((1 - mask_weights.weights.sum(0).unsqueeze(0), mask_weights.weights), dim=0)
logits_high = logits_high * weights
logits_high = logits_high.sum(0).unsqueeze(0)
dice_loss = calculate_dice_loss(logits_high, gt_mask)
focal_loss = calculate_sigmoid_focal_loss(logits_high, gt_mask)
loss = dice_loss + focal_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
if train_idx % 10 == 0:
print('Train Epoch: {:} / {:}'.format(train_idx, train_epoch))
current_lr = scheduler.get_last_lr()[0]
print('LR: {:.6f}, Dice_Loss: {:.4f}, Focal_Loss: {:.4f}'.format(current_lr, dice_loss.item(), focal_loss.item()))
mask_weights.eval()
weights = torch.cat((1 - mask_weights.weights.sum(0).unsqueeze(0), mask_weights.weights), dim=0)
weights_np = weights.detach().cpu().numpy()
print('======> Mask weights:\n', weights_np)
print('======> Start Testing')
output_image = []
for test_image in [image1, image2]:
test_image = np.array(test_image.convert("RGB"))
# Image feature encoding
predictor.set_image(test_image)
test_feat = predictor.features.squeeze()
# Image feature encoding
predictor.set_image(test_image)
test_feat = predictor.features.squeeze()
# Cosine similarity
C, h, w = test_feat.shape
test_feat = test_feat / test_feat.norm(dim=0, keepdim=True)
test_feat = test_feat.reshape(C, h * w)
sim = target_feat @ test_feat
sim = sim.reshape(1, 1, h, w)
sim = F.interpolate(sim, scale_factor=4, mode="bilinear")
sim = predictor.model.postprocess_masks(
sim,
input_size=predictor.input_size,
original_size=predictor.original_size).squeeze()
# Positive location prior
topk_xy, topk_label, _, _ = point_selection(sim, topk=1)
# First-step prediction
masks, scores, logits, logits_high = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
multimask_output=True)
# Weighted sum three-scale masks
logits_high = logits_high * weights.unsqueeze(-1)
logit_high = logits_high.sum(0)
mask = (logit_high > 0).detach().cpu().numpy()
logits = logits * weights_np[..., None]
logit = logits.sum(0)
# Cascaded Post-refinement-1
y, x = np.nonzero(mask)
x_min = x.min()
x_max = x.max()
y_min = y.min()
y_max = y.max()
input_box = np.array([x_min, y_min, x_max, y_max])
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
box=input_box[None, :],
mask_input=logit[None, :, :],
multimask_output=True)
best_idx = np.argmax(scores)
# Cascaded Post-refinement-2
y, x = np.nonzero(masks[best_idx])
x_min = x.min()
x_max = x.max()
y_min = y.min()
y_max = y.max()
input_box = np.array([x_min, y_min, x_max, y_max])
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
box=input_box[None, :],
mask_input=logits[best_idx: best_idx + 1, :, :],
multimask_output=True)
best_idx = np.argmax(scores)
final_mask = masks[best_idx]
mask_colors = np.zeros((final_mask.shape[0], final_mask.shape[1], 3), dtype=np.uint8)
mask_colors[final_mask, :] = np.array([[128, 0, 0]])
output_image.append(Image.fromarray((mask_colors * 0.6 + test_image * 0.4).astype('uint8'), 'RGB'))
return output_image[0].resize((224, 224)), output_image[1].resize((224, 224))
description = """
<div style="text-align: center; font-weight: bold;">
<span style="font-size: 18px" id="paper-info">
[<a href="https://github.com/ZrrSkywalker/Personalize-SAM" target="_blank"><font color='black'>Github</font></a>]
[<a href="https://arxiv.org/pdf/2305.03048.pdf" target="_blank"><font color='black'>Paper</font></a>]
</span>
</div>
"""
main = gr.Interface(
fn=inference,
inputs=[
gr.Image(label="one-shot image", type='pil'),
gr.Image(label="one-shot mask", type='pil'),
gr.Image(label="test image1", type='pil'),
gr.Image(label="test image2", type='pil'),
],
outputs=[
gr.Image(label="output image1", type='pil'),
gr.Image(label="output image2", type='pil'),
],
allow_flagging="never",
cache_examples=False,
title="Personalize Segment Anything Model with 1 Shot",
description=description,
examples=[
["./examples/cat_00.jpg", "./examples/cat_00.png", "./examples/cat_01.jpg", "./examples/cat_02.jpg"],
["./examples/colorful_sneaker_00.jpg", "./examples/colorful_sneaker_00.png", "./examples/colorful_sneaker_01.jpg", "./examples/colorful_sneaker_02.jpg"],
["./examples/duck_toy_00.jpg", "./examples/duck_toy_00.png", "./examples/duck_toy_01.jpg", "./examples/duck_toy_02.jpg"],
]
)
main_scribble = gr.Interface(
fn=inference_scribble,
inputs=[
gr.ImageMask(label="[Stroke] Draw on Image", type='pil'),
gr.Image(label="test image1", type='pil'),
gr.Image(label="test image2", type='pil'),
],
outputs=[
gr.Image(label="output image1", type='pil'),
gr.Image(label="output image2", type='pil'),
],
allow_flagging="never",
cache_examples=False,
title="Personalize Segment Anything Model with 1 Shot",
description=description,
examples=[
["./examples/cat_00.jpg", "./examples/cat_01.jpg", "./examples/cat_02.jpg"],
["./examples/colorful_sneaker_00.jpg", "./examples/colorful_sneaker_01.jpg", "./examples/colorful_sneaker_02.jpg"],
["./examples/duck_toy_00.jpg", "./examples/duck_toy_01.jpg", "./examples/duck_toy_02.jpg"],
]
)
main_finetune = gr.Interface(
fn=inference_finetune,
inputs=[
gr.Image(label="one-shot image", type='pil'),
gr.Image(label="one-shot mask", type='pil'),
gr.Image(label="test image1", type='pil'),
gr.Image(label="test image2", type='pil'),
],
outputs=[
gr.Image(label="output image1", type='pil'),
gr.Image(label="output image2", type='pil'),
],
allow_flagging="never",
cache_examples=False,
title="Personalize Segment Anything Model with 1 Shot",
description=description,
examples=[
["./examples/cat_00.jpg", "./examples/cat_00.png", "./examples/cat_01.jpg", "./examples/cat_02.jpg"],
["./examples/colorful_sneaker_00.jpg", "./examples/colorful_sneaker_00.png", "./examples/colorful_sneaker_01.jpg", "./examples/colorful_sneaker_02.jpg"],
["./examples/duck_toy_00.jpg", "./examples/duck_toy_00.png", "./examples/duck_toy_01.jpg", "./examples/duck_toy_02.jpg"],
]
)
demo = gr.Blocks()
with demo:
gr.TabbedInterface(
[main, main_scribble, main_finetune],
["PerSAM", " PerSAM-Scribble", "PerSAM-F"],
)
demo.launch(enable_queue=False) |