Personalize-SAM / app.py
justin-zk's picture
Update app.py
db7df49 verified
raw
history blame
20.9 kB
# --------------------------------------------------------
# PersonalizeSAM -- Personalize Segment Anything Model with One Shot
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
from PIL import Image
import torch
import torch.nn as nn
import gradio as gr
import numpy as np
from torch.nn import functional as F
from show import *
from per_segment_anything import sam_model_registry, SamPredictor
class Mask_Weights(nn.Module):
def __init__(self):
super().__init__()
self.weights = nn.Parameter(torch.ones(2, 1, requires_grad=True) / 3)
def point_selection(mask_sim, topk=1):
# Top-1 point selection
w, h = mask_sim.shape
topk_xy = mask_sim.flatten(0).topk(topk)[1]
topk_x = (topk_xy // h).unsqueeze(0)
topk_y = (topk_xy - topk_x * h)
topk_xy = torch.cat((topk_y, topk_x), dim=0).permute(1, 0)
topk_label = np.array([1] * topk)
topk_xy = topk_xy.cpu().numpy()
# Top-last point selection
last_xy = mask_sim.flatten(0).topk(topk, largest=False)[1]
last_x = (last_xy // h).unsqueeze(0)
last_y = (last_xy - last_x * h)
last_xy = torch.cat((last_y, last_x), dim=0).permute(1, 0)
last_label = np.array([0] * topk)
last_xy = last_xy.cpu().numpy()
return topk_xy, topk_label, last_xy, last_label
def calculate_dice_loss(inputs, targets, num_masks = 1):
"""
Compute the DICE loss, similar to generalized IOU for masks
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
"""
inputs = inputs.sigmoid()
inputs = inputs.flatten(1)
numerator = 2 * (inputs * targets).sum(-1)
denominator = inputs.sum(-1) + targets.sum(-1)
loss = 1 - (numerator + 1) / (denominator + 1)
return loss.sum() / num_masks
def calculate_sigmoid_focal_loss(inputs, targets, num_masks = 1, alpha: float = 0.25, gamma: float = 2):
"""
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
alpha: (optional) Weighting factor in range (0,1) to balance
positive vs negative examples. Default = -1 (no weighting).
gamma: Exponent of the modulating factor (1 - p_t) to
balance easy vs hard examples.
Returns:
Loss tensor
"""
prob = inputs.sigmoid()
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
p_t = prob * targets + (1 - prob) * (1 - targets)
loss = ce_loss * ((1 - p_t) ** gamma)
if alpha >= 0:
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
loss = alpha_t * loss
return loss.mean(1).sum() / num_masks
def inference(ic_image, ic_mask, image1, image2):
# in context image and mask
ic_image = np.array(ic_image.convert("RGB"))
ic_mask = np.array(ic_mask.convert("RGB"))
sam_type, sam_ckpt = 'vit_h', 'sam_vit_h_4b8939.pth'
sam = sam_model_registry[sam_type](checkpoint=sam_ckpt).cuda()
# sam = sam_model_registry[sam_type](checkpoint=sam_ckpt)
predictor = SamPredictor(sam)
# Image features encoding
ref_mask = predictor.set_image(ic_image, ic_mask)
ref_feat = predictor.features.squeeze().permute(1, 2, 0)
ref_mask = F.interpolate(ref_mask, size=ref_feat.shape[0: 2], mode="bilinear")
ref_mask = ref_mask.squeeze()[0]
# Target feature extraction
print("======> Obtain Location Prior" )
target_feat = ref_feat[ref_mask > 0]
target_embedding = target_feat.mean(0).unsqueeze(0)
target_feat = target_embedding / target_embedding.norm(dim=-1, keepdim=True)
target_embedding = target_embedding.unsqueeze(0)
output_image = []
for test_image in [image1, image2]:
print("======> Testing Image" )
test_image = np.array(test_image.convert("RGB"))
# Image feature encoding
predictor.set_image(test_image)
test_feat = predictor.features.squeeze()
# Cosine similarity
C, h, w = test_feat.shape
test_feat = test_feat / test_feat.norm(dim=0, keepdim=True)
test_feat = test_feat.reshape(C, h * w)
sim = target_feat @ test_feat
sim = sim.reshape(1, 1, h, w)
sim = F.interpolate(sim, scale_factor=4, mode="bilinear")
sim = predictor.model.postprocess_masks(
sim,
input_size=predictor.input_size,
original_size=predictor.original_size).squeeze()
# Positive-negative location prior
topk_xy_i, topk_label_i, last_xy_i, last_label_i = point_selection(sim, topk=1)
topk_xy = np.concatenate([topk_xy_i, last_xy_i], axis=0)
topk_label = np.concatenate([topk_label_i, last_label_i], axis=0)
# Obtain the target guidance for cross-attention layers
sim = (sim - sim.mean()) / torch.std(sim)
sim = F.interpolate(sim.unsqueeze(0).unsqueeze(0), size=(64, 64), mode="bilinear")
attn_sim = sim.sigmoid_().unsqueeze(0).flatten(3)
# First-step prediction
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
multimask_output=False,
attn_sim=attn_sim, # Target-guided Attention
target_embedding=target_embedding # Target-semantic Prompting
)
best_idx = 0
# Cascaded Post-refinement-1
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
mask_input=logits[best_idx: best_idx + 1, :, :],
multimask_output=True)
best_idx = np.argmax(scores)
# Cascaded Post-refinement-2
y, x = np.nonzero(masks[best_idx])
x_min = x.min()
x_max = x.max()
y_min = y.min()
y_max = y.max()
input_box = np.array([x_min, y_min, x_max, y_max])
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
box=input_box[None, :],
mask_input=logits[best_idx: best_idx + 1, :, :],
multimask_output=True)
best_idx = np.argmax(scores)
final_mask = masks[best_idx]
mask_colors = np.zeros((final_mask.shape[0], final_mask.shape[1], 3), dtype=np.uint8)
mask_colors[final_mask, :] = np.array([[128, 0, 0]])
output_image.append(Image.fromarray((mask_colors * 0.6 + test_image * 0.4).astype('uint8'), 'RGB'))
return output_image[0].resize((224, 224)), output_image[1].resize((224, 224))
def inference_scribble(image, image1, image2):
# in context image and mask
ic_image = image["image"]
ic_mask = image["mask"]
ic_image = np.array(ic_image.convert("RGB"))
ic_mask = np.array(ic_mask.convert("RGB"))
sam_type, sam_ckpt = 'vit_h', 'sam_vit_h_4b8939.pth'
sam = sam_model_registry[sam_type](checkpoint=sam_ckpt).cuda()
# sam = sam_model_registry[sam_type](checkpoint=sam_ckpt)
predictor = SamPredictor(sam)
# Image features encoding
ref_mask = predictor.set_image(ic_image, ic_mask)
ref_feat = predictor.features.squeeze().permute(1, 2, 0)
ref_mask = F.interpolate(ref_mask, size=ref_feat.shape[0: 2], mode="bilinear")
ref_mask = ref_mask.squeeze()[0]
# Target feature extraction
print("======> Obtain Location Prior" )
target_feat = ref_feat[ref_mask > 0]
target_embedding = target_feat.mean(0).unsqueeze(0)
target_feat = target_embedding / target_embedding.norm(dim=-1, keepdim=True)
target_embedding = target_embedding.unsqueeze(0)
output_image = []
for test_image in [image1, image2]:
print("======> Testing Image" )
test_image = np.array(test_image.convert("RGB"))
# Image feature encoding
predictor.set_image(test_image)
test_feat = predictor.features.squeeze()
# Cosine similarity
C, h, w = test_feat.shape
test_feat = test_feat / test_feat.norm(dim=0, keepdim=True)
test_feat = test_feat.reshape(C, h * w)
sim = target_feat @ test_feat
sim = sim.reshape(1, 1, h, w)
sim = F.interpolate(sim, scale_factor=4, mode="bilinear")
sim = predictor.model.postprocess_masks(
sim,
input_size=predictor.input_size,
original_size=predictor.original_size).squeeze()
# Positive-negative location prior
topk_xy_i, topk_label_i, last_xy_i, last_label_i = point_selection(sim, topk=1)
topk_xy = np.concatenate([topk_xy_i, last_xy_i], axis=0)
topk_label = np.concatenate([topk_label_i, last_label_i], axis=0)
# Obtain the target guidance for cross-attention layers
sim = (sim - sim.mean()) / torch.std(sim)
sim = F.interpolate(sim.unsqueeze(0).unsqueeze(0), size=(64, 64), mode="bilinear")
attn_sim = sim.sigmoid_().unsqueeze(0).flatten(3)
# First-step prediction
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
multimask_output=False,
attn_sim=attn_sim, # Target-guided Attention
target_embedding=target_embedding # Target-semantic Prompting
)
best_idx = 0
# Cascaded Post-refinement-1
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
mask_input=logits[best_idx: best_idx + 1, :, :],
multimask_output=True)
best_idx = np.argmax(scores)
# Cascaded Post-refinement-2
y, x = np.nonzero(masks[best_idx])
x_min = x.min()
x_max = x.max()
y_min = y.min()
y_max = y.max()
input_box = np.array([x_min, y_min, x_max, y_max])
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
box=input_box[None, :],
mask_input=logits[best_idx: best_idx + 1, :, :],
multimask_output=True)
best_idx = np.argmax(scores)
final_mask = masks[best_idx]
mask_colors = np.zeros((final_mask.shape[0], final_mask.shape[1], 3), dtype=np.uint8)
mask_colors[final_mask, :] = np.array([[128, 0, 0]])
output_image.append(Image.fromarray((mask_colors * 0.6 + test_image * 0.4).astype('uint8'), 'RGB'))
return output_image[0].resize((224, 224)), output_image[1].resize((224, 224))
def inference_finetune(ic_image, ic_mask, image1, image2):
# in context image and mask
ic_image = np.array(ic_image.convert("RGB"))
ic_mask = np.array(ic_mask.convert("RGB"))
gt_mask = torch.tensor(ic_mask)[:, :, 0] > 0
gt_mask = gt_mask.float().unsqueeze(0).flatten(1).cuda()
# gt_mask = gt_mask.float().unsqueeze(0).flatten(1)
sam_type, sam_ckpt = 'vit_h', 'sam_vit_h_4b8939.pth'
sam = sam_model_registry[sam_type](checkpoint=sam_ckpt).cuda()
# sam = sam_model_registry[sam_type](checkpoint=sam_ckpt)
for name, param in sam.named_parameters():
param.requires_grad = False
predictor = SamPredictor(sam)
print("======> Obtain Self Location Prior" )
# Image features encoding
ref_mask = predictor.set_image(ic_image, ic_mask)
ref_feat = predictor.features.squeeze().permute(1, 2, 0)
ref_mask = F.interpolate(ref_mask, size=ref_feat.shape[0: 2], mode="bilinear")
ref_mask = ref_mask.squeeze()[0]
# Target feature extraction
target_feat = ref_feat[ref_mask > 0]
target_feat_mean = target_feat.mean(0)
target_feat_max = torch.max(target_feat, dim=0)[0]
target_feat = (target_feat_max / 2 + target_feat_mean / 2).unsqueeze(0)
# Cosine similarity
h, w, C = ref_feat.shape
target_feat = target_feat / target_feat.norm(dim=-1, keepdim=True)
ref_feat = ref_feat / ref_feat.norm(dim=-1, keepdim=True)
ref_feat = ref_feat.permute(2, 0, 1).reshape(C, h * w)
sim = target_feat @ ref_feat
sim = sim.reshape(1, 1, h, w)
sim = F.interpolate(sim, scale_factor=4, mode="bilinear")
sim = predictor.model.postprocess_masks(
sim,
input_size=predictor.input_size,
original_size=predictor.original_size).squeeze()
# Positive location prior
topk_xy, topk_label, _, _ = point_selection(sim, topk=1)
print('======> Start Training')
# Learnable mask weights
mask_weights = Mask_Weights().cuda()
# mask_weights = Mask_Weights()
mask_weights.train()
train_epoch = 100
optimizer = torch.optim.AdamW(mask_weights.parameters(), lr=1e-3, eps=1e-4)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, train_epoch)
for train_idx in range(train_epoch):
# Run the decoder
masks, scores, logits, logits_high = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
multimask_output=True)
logits_high = logits_high.flatten(1)
# Weighted sum three-scale masks
weights = torch.cat((1 - mask_weights.weights.sum(0).unsqueeze(0), mask_weights.weights), dim=0)
logits_high = logits_high * weights
logits_high = logits_high.sum(0).unsqueeze(0)
dice_loss = calculate_dice_loss(logits_high, gt_mask)
focal_loss = calculate_sigmoid_focal_loss(logits_high, gt_mask)
loss = dice_loss + focal_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
if train_idx % 10 == 0:
print('Train Epoch: {:} / {:}'.format(train_idx, train_epoch))
current_lr = scheduler.get_last_lr()[0]
print('LR: {:.6f}, Dice_Loss: {:.4f}, Focal_Loss: {:.4f}'.format(current_lr, dice_loss.item(), focal_loss.item()))
mask_weights.eval()
weights = torch.cat((1 - mask_weights.weights.sum(0).unsqueeze(0), mask_weights.weights), dim=0)
weights_np = weights.detach().cpu().numpy()
print('======> Mask weights:\n', weights_np)
print('======> Start Testing')
output_image = []
for test_image in [image1, image2]:
test_image = np.array(test_image.convert("RGB"))
# Image feature encoding
predictor.set_image(test_image)
test_feat = predictor.features.squeeze()
# Image feature encoding
predictor.set_image(test_image)
test_feat = predictor.features.squeeze()
# Cosine similarity
C, h, w = test_feat.shape
test_feat = test_feat / test_feat.norm(dim=0, keepdim=True)
test_feat = test_feat.reshape(C, h * w)
sim = target_feat @ test_feat
sim = sim.reshape(1, 1, h, w)
sim = F.interpolate(sim, scale_factor=4, mode="bilinear")
sim = predictor.model.postprocess_masks(
sim,
input_size=predictor.input_size,
original_size=predictor.original_size).squeeze()
# Positive location prior
topk_xy, topk_label, _, _ = point_selection(sim, topk=1)
# First-step prediction
masks, scores, logits, logits_high = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
multimask_output=True)
# Weighted sum three-scale masks
logits_high = logits_high * weights.unsqueeze(-1)
logit_high = logits_high.sum(0)
mask = (logit_high > 0).detach().cpu().numpy()
logits = logits * weights_np[..., None]
logit = logits.sum(0)
# Cascaded Post-refinement-1
y, x = np.nonzero(mask)
x_min = x.min()
x_max = x.max()
y_min = y.min()
y_max = y.max()
input_box = np.array([x_min, y_min, x_max, y_max])
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
box=input_box[None, :],
mask_input=logit[None, :, :],
multimask_output=True)
best_idx = np.argmax(scores)
# Cascaded Post-refinement-2
y, x = np.nonzero(masks[best_idx])
x_min = x.min()
x_max = x.max()
y_min = y.min()
y_max = y.max()
input_box = np.array([x_min, y_min, x_max, y_max])
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
box=input_box[None, :],
mask_input=logits[best_idx: best_idx + 1, :, :],
multimask_output=True)
best_idx = np.argmax(scores)
final_mask = masks[best_idx]
mask_colors = np.zeros((final_mask.shape[0], final_mask.shape[1], 3), dtype=np.uint8)
mask_colors[final_mask, :] = np.array([[128, 0, 0]])
output_image.append(Image.fromarray((mask_colors * 0.6 + test_image * 0.4).astype('uint8'), 'RGB'))
return output_image[0].resize((224, 224)), output_image[1].resize((224, 224))
description = """
<div style="text-align: center; font-weight: bold;">
<span style="font-size: 18px" id="paper-info">
[<a href="https://github.com/ZrrSkywalker/Personalize-SAM" target="_blank"><font color='black'>Github</font></a>]
[<a href="https://arxiv.org/pdf/2305.03048.pdf" target="_blank"><font color='black'>Paper</font></a>]
</span>
</div>
"""
main = gr.Interface(
fn=inference,
inputs=[
gr.Image(label="one-shot image", type='pil'),
gr.Image(label="one-shot mask", type='pil'),
gr.Image(label="test image1", type='pil'),
gr.Image(label="test image2", type='pil'),
],
outputs=[
gr.Image(label="output image1", type='pil'),
gr.Image(label="output image2", type='pil'),
],
allow_flagging="never",
cache_examples=False,
title="Personalize Segment Anything Model with 1 Shot",
description=description,
examples=[
["./examples/cat_00.jpg", "./examples/cat_00.png", "./examples/cat_01.jpg", "./examples/cat_02.jpg"],
["./examples/colorful_sneaker_00.jpg", "./examples/colorful_sneaker_00.png", "./examples/colorful_sneaker_01.jpg", "./examples/colorful_sneaker_02.jpg"],
["./examples/duck_toy_00.jpg", "./examples/duck_toy_00.png", "./examples/duck_toy_01.jpg", "./examples/duck_toy_02.jpg"],
]
)
main_scribble = gr.Interface(
fn=inference_scribble,
inputs=[
gr.ImageMask(label="[Stroke] Draw on Image", type='pil'),
gr.Image(label="test image1", type='pil'),
gr.Image(label="test image2", type='pil'),
],
outputs=[
gr.Image(label="output image1", type='pil'),
gr.Image(label="output image2", type='pil'),
],
allow_flagging="never",
cache_examples=False,
title="Personalize Segment Anything Model with 1 Shot",
description=description,
examples=[
["./examples/cat_00.jpg", "./examples/cat_01.jpg", "./examples/cat_02.jpg"],
["./examples/colorful_sneaker_00.jpg", "./examples/colorful_sneaker_01.jpg", "./examples/colorful_sneaker_02.jpg"],
["./examples/duck_toy_00.jpg", "./examples/duck_toy_01.jpg", "./examples/duck_toy_02.jpg"],
]
)
main_finetune = gr.Interface(
fn=inference_finetune,
inputs=[
gr.Image(label="one-shot image", type='pil'),
gr.Image(label="one-shot mask", type='pil'),
gr.Image(label="test image1", type='pil'),
gr.Image(label="test image2", type='pil'),
],
outputs=[
gr.Image(label="output image1", type='pil'),
gr.Image(label="output image2", type='pil'),
],
allow_flagging="never",
cache_examples=False,
title="Personalize Segment Anything Model with 1 Shot",
description=description,
examples=[
["./examples/cat_00.jpg", "./examples/cat_00.png", "./examples/cat_01.jpg", "./examples/cat_02.jpg"],
["./examples/colorful_sneaker_00.jpg", "./examples/colorful_sneaker_00.png", "./examples/colorful_sneaker_01.jpg", "./examples/colorful_sneaker_02.jpg"],
["./examples/duck_toy_00.jpg", "./examples/duck_toy_00.png", "./examples/duck_toy_01.jpg", "./examples/duck_toy_02.jpg"],
]
)
demo = gr.Blocks()
with demo:
gr.TabbedInterface(
[main, main_scribble, main_finetune],
["PerSAM", " PerSAM-Scribble", "PerSAM-F"],
)
demo.launch(enable_queue=False)