import gc import hashlib import os import shlex import subprocess import librosa import torch import numpy as np import soundfile as sf import gradio as gr from rvc import Config, load_hubert, get_vc, rvc_infer BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) RVC_MODELS_DIR = os.path.join(BASE_DIR, 'rvc_models') OUTPUT_DIR = os.path.join(BASE_DIR, 'song_output') def get_rvc_model(voice_model): model_dir = os.path.join(RVC_MODELS_DIR, voice_model) rvc_model_path = next((os.path.join(model_dir, f) for f in os.listdir(model_dir) if f.endswith('.pth')), None) rvc_index_path = next((os.path.join(model_dir, f) for f in os.listdir(model_dir) if f.endswith('.index')), None) if rvc_model_path is None: raise FileNotFoundError(f'There is no model file in the {model_dir} directory.') return rvc_model_path, rvc_index_path def convert_to_stereo(audio_path): wave, sr = librosa.load(audio_path, mono=False, sr=44100) if type(wave[0]) != np.ndarray: stereo_path = 'Voice_stereo.wav' command = shlex.split(f'ffmpeg -y -loglevel error -i "{audio_path}" -ac 2 -f wav "{stereo_path}"') subprocess.run(command) return stereo_path return audio_path def get_hash(filepath): file_hash = hashlib.blake2b() with open(filepath, 'rb') as f: while chunk := f.read(8192): file_hash.update(chunk) return file_hash.hexdigest()[:11] def display_progress(percent, message, progress=gr.Progress()): progress(percent, desc=message) def voice_change(voice_model, vocals_path, output_path, pitch_change, f0_method, index_rate, filter_radius, rms_mix_rate, protect, crepe_hop_length, f0_min, f0_max): rvc_model_path, rvc_index_path = get_rvc_model(voice_model) if torch.cuda.is_available(): device = 'cuda:0' else: device = 'cpu' config = Config(device, True) hubert_model = load_hubert(device, config.is_half, os.path.join(RVC_MODELS_DIR, 'hubert_base.pt')) cpt, version, net_g, tgt_sr, vc = get_vc(device, config.is_half, config, rvc_model_path) rvc_infer(rvc_index_path, index_rate, vocals_path, output_path, pitch_change, f0_method, cpt, version, net_g, filter_radius, tgt_sr, rms_mix_rate, protect, crepe_hop_length, vc, hubert_model, f0_min, f0_max) del hubert_model, cpt, net_g, vc gc.collect() torch.cuda.empty_cache() def song_cover_pipeline(uploaded_file, voice_model, pitch_change, index_rate=0.5, filter_radius=3, rms_mix_rate=0.25, f0_method='rmvpe', crepe_hop_length=128, protect=0.33, output_format='mp3', progress=gr.Progress(), f0_min=50, f0_max=1100): if not uploaded_file or not voice_model: raise ValueError('Make sure that the song input field and voice model field are filled in.') display_progress(0, '[~] Starting the AI cover generation pipeline...', progress) if not os.path.exists(uploaded_file): raise FileNotFoundError(f'{uploaded_file} does not exist.') song_id = get_hash(uploaded_file) song_dir = os.path.join(OUTPUT_DIR, song_id) os.makedirs(song_dir, exist_ok=True) orig_song_path = convert_to_stereo(uploaded_file) ai_cover_path = os.path.join(song_dir, f'Converted_Voice.{output_format}') if os.path.exists(ai_cover_path): os.remove(ai_cover_path) display_progress(0.5, '[~] Converting vocals...', progress) voice_change(voice_model, orig_song_path, ai_cover_path, pitch_change, f0_method, index_rate, filter_radius, rms_mix_rate, protect, crepe_hop_length, f0_min, f0_max) return ai_cover_path