EXPOX
commited on
Commit
•
3198d2c
1
Parent(s):
72bb841
Upload mdxnet.py
Browse files- lib_v5/mdxnet.py +140 -0
lib_v5/mdxnet.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABCMeta
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from pytorch_lightning import LightningModule
|
6 |
+
from .modules import TFC_TDF
|
7 |
+
|
8 |
+
dim_s = 4
|
9 |
+
|
10 |
+
class AbstractMDXNet(LightningModule):
|
11 |
+
__metaclass__ = ABCMeta
|
12 |
+
|
13 |
+
def __init__(self, target_name, lr, optimizer, dim_c, dim_f, dim_t, n_fft, hop_length, overlap):
|
14 |
+
super().__init__()
|
15 |
+
self.target_name = target_name
|
16 |
+
self.lr = lr
|
17 |
+
self.optimizer = optimizer
|
18 |
+
self.dim_c = dim_c
|
19 |
+
self.dim_f = dim_f
|
20 |
+
self.dim_t = dim_t
|
21 |
+
self.n_fft = n_fft
|
22 |
+
self.n_bins = n_fft // 2 + 1
|
23 |
+
self.hop_length = hop_length
|
24 |
+
self.window = nn.Parameter(torch.hann_window(window_length=self.n_fft, periodic=True), requires_grad=False)
|
25 |
+
self.freq_pad = nn.Parameter(torch.zeros([1, dim_c, self.n_bins - self.dim_f, self.dim_t]), requires_grad=False)
|
26 |
+
|
27 |
+
def configure_optimizers(self):
|
28 |
+
if self.optimizer == 'rmsprop':
|
29 |
+
return torch.optim.RMSprop(self.parameters(), self.lr)
|
30 |
+
|
31 |
+
if self.optimizer == 'adamw':
|
32 |
+
return torch.optim.AdamW(self.parameters(), self.lr)
|
33 |
+
|
34 |
+
class ConvTDFNet(AbstractMDXNet):
|
35 |
+
def __init__(self, target_name, lr, optimizer, dim_c, dim_f, dim_t, n_fft, hop_length,
|
36 |
+
num_blocks, l, g, k, bn, bias, overlap):
|
37 |
+
|
38 |
+
super(ConvTDFNet, self).__init__(
|
39 |
+
target_name, lr, optimizer, dim_c, dim_f, dim_t, n_fft, hop_length, overlap)
|
40 |
+
self.save_hyperparameters()
|
41 |
+
|
42 |
+
self.num_blocks = num_blocks
|
43 |
+
self.l = l
|
44 |
+
self.g = g
|
45 |
+
self.k = k
|
46 |
+
self.bn = bn
|
47 |
+
self.bias = bias
|
48 |
+
|
49 |
+
if optimizer == 'rmsprop':
|
50 |
+
norm = nn.BatchNorm2d
|
51 |
+
|
52 |
+
if optimizer == 'adamw':
|
53 |
+
norm = lambda input:nn.GroupNorm(2, input)
|
54 |
+
|
55 |
+
self.n = num_blocks // 2
|
56 |
+
scale = (2, 2)
|
57 |
+
|
58 |
+
self.first_conv = nn.Sequential(
|
59 |
+
nn.Conv2d(in_channels=self.dim_c, out_channels=g, kernel_size=(1, 1)),
|
60 |
+
norm(g),
|
61 |
+
nn.ReLU(),
|
62 |
+
)
|
63 |
+
|
64 |
+
f = self.dim_f
|
65 |
+
c = g
|
66 |
+
self.encoding_blocks = nn.ModuleList()
|
67 |
+
self.ds = nn.ModuleList()
|
68 |
+
for i in range(self.n):
|
69 |
+
self.encoding_blocks.append(TFC_TDF(c, l, f, k, bn, bias=bias, norm=norm))
|
70 |
+
self.ds.append(
|
71 |
+
nn.Sequential(
|
72 |
+
nn.Conv2d(in_channels=c, out_channels=c + g, kernel_size=scale, stride=scale),
|
73 |
+
norm(c + g),
|
74 |
+
nn.ReLU()
|
75 |
+
)
|
76 |
+
)
|
77 |
+
f = f // 2
|
78 |
+
c += g
|
79 |
+
|
80 |
+
self.bottleneck_block = TFC_TDF(c, l, f, k, bn, bias=bias, norm=norm)
|
81 |
+
|
82 |
+
self.decoding_blocks = nn.ModuleList()
|
83 |
+
self.us = nn.ModuleList()
|
84 |
+
for i in range(self.n):
|
85 |
+
self.us.append(
|
86 |
+
nn.Sequential(
|
87 |
+
nn.ConvTranspose2d(in_channels=c, out_channels=c - g, kernel_size=scale, stride=scale),
|
88 |
+
norm(c - g),
|
89 |
+
nn.ReLU()
|
90 |
+
)
|
91 |
+
)
|
92 |
+
f = f * 2
|
93 |
+
c -= g
|
94 |
+
|
95 |
+
self.decoding_blocks.append(TFC_TDF(c, l, f, k, bn, bias=bias, norm=norm))
|
96 |
+
|
97 |
+
self.final_conv = nn.Sequential(
|
98 |
+
nn.Conv2d(in_channels=c, out_channels=self.dim_c, kernel_size=(1, 1)),
|
99 |
+
)
|
100 |
+
|
101 |
+
def forward(self, x):
|
102 |
+
|
103 |
+
x = self.first_conv(x)
|
104 |
+
|
105 |
+
x = x.transpose(-1, -2)
|
106 |
+
|
107 |
+
ds_outputs = []
|
108 |
+
for i in range(self.n):
|
109 |
+
x = self.encoding_blocks[i](x)
|
110 |
+
ds_outputs.append(x)
|
111 |
+
x = self.ds[i](x)
|
112 |
+
|
113 |
+
x = self.bottleneck_block(x)
|
114 |
+
|
115 |
+
for i in range(self.n):
|
116 |
+
x = self.us[i](x)
|
117 |
+
x *= ds_outputs[-i - 1]
|
118 |
+
x = self.decoding_blocks[i](x)
|
119 |
+
|
120 |
+
x = x.transpose(-1, -2)
|
121 |
+
|
122 |
+
x = self.final_conv(x)
|
123 |
+
|
124 |
+
return x
|
125 |
+
|
126 |
+
class Mixer(nn.Module):
|
127 |
+
def __init__(self, device, mixer_path):
|
128 |
+
|
129 |
+
super(Mixer, self).__init__()
|
130 |
+
|
131 |
+
self.linear = nn.Linear((dim_s+1)*2, dim_s*2, bias=False)
|
132 |
+
|
133 |
+
self.load_state_dict(
|
134 |
+
torch.load(mixer_path, map_location=device)
|
135 |
+
)
|
136 |
+
|
137 |
+
def forward(self, x):
|
138 |
+
x = x.reshape(1,(dim_s+1)*2,-1).transpose(-1,-2)
|
139 |
+
x = self.linear(x)
|
140 |
+
return x.transpose(-1,-2).reshape(dim_s,2,-1)
|