File size: 5,177 Bytes
7f59780
 
 
f20be77
7f59780
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a58e064
 
ebdf946
7f59780
a0e100e
7f59780
 
 
 
61b5be3
 
7f59780
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e3afa0
bc3a9b9
7f59780
 
 
 
 
 
a0e100e
7f59780
 
a0e100e
7f59780
6b79e13
bc3a9b9
a0e100e
7f59780
db1ed1d
7f59780
6b79e13
bc3a9b9
a0e100e
7f59780
db1ed1d
7f59780
6b79e13
bc3a9b9
a0e100e
7f59780
db1ed1d
7f59780
6b79e13
44a5e23
a0e100e
7f59780
db1ed1d
7f59780
d17dc3d
7f59780
 
 
 
 
 
dd85d3d
7f59780
 
 
a2e617a
7f59780
 
6b79e13
7f59780
 
6b79e13
7f59780
 
6b79e13
7f59780
 
970fb7e
 
 
 
7f59780
a3c9882
7f59780
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import requests
import gradio as gr
import numpy as np
import cv2
import torch
import torch.nn as nn
from PIL import Image
from torchvision import transforms
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.data import create_transform
from focalnet import FocalNet, build_transforms, build_transforms4display

# Download human-readable labels for ImageNet.
response = requests.get("https://git.io/JJkYN")
labels = response.text.split("\n")

'''
build model
'''
model = FocalNet(depths=[12], patch_size=16, embed_dim=768, focal_levels=[3], use_layerscale=True, use_postln=True)
# url = 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_iso_16.pth'
# checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
checkpoint = torch.load("./focalnet_base_iso_16.pth", map_location="cpu")
model.load_state_dict(checkpoint["model"])
model.eval()

'''
build data transform
'''
eval_transforms = build_transforms(224, center_crop=False)
display_transforms = build_transforms4display(224, center_crop=False)

'''
build upsampler
'''
# upsampler = nn.Upsample(scale_factor=16, mode='bilinear')

'''
borrow code from here: https://github.com/jacobgil/pytorch-grad-cam/blob/master/pytorch_grad_cam/utils/image.py
'''
def show_cam_on_image(img: np.ndarray,
                      mask: np.ndarray,
                      use_rgb: bool = False,
                      colormap: int = cv2.COLORMAP_JET) -> np.ndarray:
    """ This function overlays the cam mask on the image as an heatmap.
    By default the heatmap is in BGR format.
    :param img: The base image in RGB or BGR format.
    :param mask: The cam mask.
    :param use_rgb: Whether to use an RGB or BGR heatmap, this should be set to True if 'img' is in RGB format.
    :param colormap: The OpenCV colormap to be used.
    :returns: The default image with the cam overlay.
    """
    heatmap = cv2.applyColorMap(np.uint8(255 * mask), colormap)
    if use_rgb:
        heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
    heatmap = np.float32(heatmap) / 255

    if np.max(img) > 1:
        raise Exception(
            "The input image should np.float32 in the range [0, 1]")

    cam = 0.5*heatmap + 0.5*img
    # cam = heatmap    
    # cam = cam / np.max(cam)
    return np.uint8(255 * cam)

def classify_image(inp):
    
    img_t = eval_transforms(inp) 
    img_d = display_transforms(inp).permute(1, 2, 0).numpy()
    print(img_d.min(), img_d.max())

    prediction = model(img_t.unsqueeze(0)).softmax(-1).flatten()

    modulator = model.layers[0].blocks[11].modulation.modulator.norm(2, 1, keepdim=True)
    modulator = nn.Upsample(size=img_t.shape[1:], mode='bilinear')(modulator)
    modulator = modulator.squeeze(1).detach().permute(1, 2, 0).numpy()
    modulator = (modulator - modulator.min()) / (modulator.max() - modulator.min())
    cam0 = show_cam_on_image(img_d, modulator, use_rgb=True)

    modulator = model.layers[0].blocks[8].modulation.modulator.norm(2, 1, keepdim=True)
    modulator = nn.Upsample(size=img_t.shape[1:], mode='bilinear')(modulator)
    modulator = modulator.squeeze(1).detach().permute(1, 2, 0).numpy()
    modulator = (modulator - modulator.min()) / (modulator.max() - modulator.min())
    cam1 = show_cam_on_image(img_d, modulator, use_rgb=True)

    modulator = model.layers[0].blocks[5].modulation.modulator.norm(2, 1, keepdim=True)
    modulator = nn.Upsample(size=img_t.shape[1:], mode='bilinear')(modulator)
    modulator = modulator.squeeze(1).detach().permute(1, 2, 0).numpy()
    modulator = (modulator - modulator.min()) / (modulator.max() - modulator.min())
    cam2 = show_cam_on_image(img_d, modulator, use_rgb=True)

    modulator = model.layers[0].blocks[2].modulation.modulator.norm(2, 1, keepdim=True)
    modulator = nn.Upsample(size=img_t.shape[1:], mode='bilinear')(modulator)
    modulator = modulator.squeeze(1).detach().permute(1, 2, 0).numpy()
    modulator = (modulator - modulator.min()) / (modulator.max() - modulator.min())
    cam3 = show_cam_on_image(img_d, modulator, use_rgb=True)

    return {labels[i]: float(prediction[i]) for i in range(1000)}, Image.fromarray(cam0), Image.fromarray(cam1), Image.fromarray(cam2), Image.fromarray(cam3), Image.fromarray(np.uint8(255 * img_d))


image = gr.inputs.Image()
label = gr.outputs.Label(num_top_classes=3)

gr.Interface(
    description="Image classification and visualizations with FocalNet (https://github.com/microsoft/FocalNet)",
    fn=classify_image,
    inputs=image,
    outputs=[
        label,
        gr.outputs.Image(
        type="pil",
        label="Modulator at layer 12"),     
        gr.outputs.Image(
        type="pil",
        label="Modulator at layer 9"),     
        gr.outputs.Image(
        type="pil",
        label="Modulator at layer 6"),     
        gr.outputs.Image(
        type="pil",
        label="Modulator at layer 3"),     
        gr.outputs.Image(
        type="pil",
        label="Cropped Input"),                                
    ],
    examples=[["./donut.png"], ["./horses.png"], ["./pencil.png"], ["./ILSVRC2012_val_00031987.JPEG"]],
).launch()