import os
import time
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import gradio as gr
from threading import Thread
MODEL = "jwang2373/UW-SBEL-ChronoGemma-27b-it"
TITLE = "
UW-SBEL-ChronoGemma-27b
"
PLACEHOLDER = """
Hi! I'm a PyChrono Digital Twin expert. How can I assist you today?
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
"""
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(MODEL, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(MODEL, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
model = model.eval()
@spaces.GPU()
def stream_chat(
message: str,
history: list,
system_prompt: str,
temperature: float = 0.5,
max_new_tokens: int = 32768,
top_p: float = 1.0,
top_k: int = 50,
):
print(f'message: {message}')
print(f'history: {history}')
full_prompt = f"<>\n{system_prompt}\n<>\n\n"
for prompt, answer in history:
full_prompt += f"[INST]{prompt}[/INST]{answer}"
full_prompt += f"[INST]{message}[/INST]"
inputs = tokenizer(full_prompt, truncation=False, return_tensors="pt").to(device)
context_length = inputs.input_ids.shape[-1]
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
inputs=inputs.input_ids,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
streamer=streamer,
)
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
with gr.Blocks(css=CSS, theme="soft") as demo:
gr.HTML(TITLE)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Textbox(
value="You are a PyChrono expert.",
label="System Prompt",
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.5,
label="Temperature",
render=False,
),
gr.Slider(
minimum=1024,
maximum=4096,
step=1024,
value=4096,
label="Max new tokens",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="Top p",
render=False,
),
gr.Slider(
minimum=1,
maximum=100,
step=1,
value=100,
label="Top k",
render=False,
),
],
examples=[
["Run a PyChrono simulation of a sedan driving on a flat surface with a detailed vehicle dynamics model."],
["Run a real-time simulation of an HMMWV vehicle on a bumpy and textured road."],
["Set up a Curiosity rover driving simulation on flat, rigid ground in PyChrono."],
["Simulate a FEDA vehicle driving on rigid terrain in PyChrono."],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch()