Spaces:
Build error
Build error
File size: 8,671 Bytes
4f4509d d32adcb 8b300d9 6abad74 4f4509d 6abad74 9850537 6abad74 ba76dfd f3e34b0 4f4509d f3e34b0 a03fe94 4f4509d d32e597 a03fe94 f3e34b0 cce1831 a03fe94 cce1831 55e476e f3e34b0 d32e597 f3e34b0 a03fe94 f3e34b0 a03fe94 f3e34b0 a03fe94 f3e34b0 4f4509d d32e597 f3e34b0 d32e597 f3e34b0 d32e597 f3e34b0 12a8812 d32e597 f3e34b0 4f4509d f3e34b0 a03fe94 4f4509d f3e34b0 6abad74 f3e34b0 6abad74 a03fe94 ba76dfd f3e34b0 ba76dfd 9850537 ba76dfd 777823b ba76dfd 4f4509d ba76dfd 4f4509d ba76dfd 5b4ede2 777823b f3e34b0 4f4509d ba76dfd a03fe94 4f4509d ba76dfd 5b4ede2 f3e34b0 55e476e f3e34b0 6abad74 f3e34b0 d32e597 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import tempfile
from share_btn import community_icon_html, loading_icon_html, share_js
import huggingface_hub
import gradio as gr
from fromage import utils
from fromage import models
import matplotlib.pyplot as plt
from PIL import Image
import torch
import numpy as np
import os
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "False"
css = """
#share-btn-container {
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
margin-top: 10px;
margin-left: auto;
flex: unset;
}
#share-btn {
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
#chatbot { min-height: 300px; }
"""
examples = [
]
# Download model from HF Hub.
ckpt_path = huggingface_hub.hf_hub_download(
repo_id='jykoh/fromage', filename='pretrained_ckpt.pth.tar')
args_path = huggingface_hub.hf_hub_download(
repo_id='jykoh/fromage', filename='model_args.json')
model = models.load_fromage('./', args_path, ckpt_path)
def upload_image(state, image_input):
conversation = state[0]
chat_history = state[1]
input_image = Image.open(image_input.name).resize(
(224, 224)).convert('RGB')
input_image.save(image_input.name) # Overwrite with smaller image.
conversation += [(f"![](/file={image_input.name})", "")]
return [conversation, chat_history, input_image], conversation
def reset():
return [[], [], None], []
def reset_last(state):
conversation = state[0][:-1]
chat_history = state[1][:-2]
input_image = state[2]
return [conversation, chat_history, input_image], conversation
def save_image_to_local(image: Image.Image):
# TODO(jykoh): Update so the url path is used, to prevent repeat saving.
filename = next(tempfile._get_candidate_names()) + '.png'
image.save(filename)
return filename
def generate_for_prompt(input_text, state, ret_scale_factor, max_num_rets, num_words, temperature):
# Ignore empty inputs.
if len(input_text) == 0:
return state, state[0], gr.update(visible=True)
input_prompt = 'Q: ' + input_text + '\nA:'
conversation = state[0]
chat_history = state[1]
input_image = state[2]
print('Generating for', chat_history, flush=True)
# If an image was uploaded, prepend it to the model.
model_inputs = None
if input_image is not None:
model_inputs = chat_history + [input_image]
else:
model_inputs = chat_history
model_inputs.append(input_prompt)
top_p = 1.0
if temperature != 0.0:
top_p = 0.95
print('Running model.generate_for_images_and_texts with',
model_inputs, flush=True)
model_outputs = model.generate_for_images_and_texts(model_inputs,
num_words=max(num_words, 1), ret_scale_factor=ret_scale_factor, top_p=top_p,
temperature=temperature, max_num_rets=max_num_rets)
print('model_outputs', model_outputs, flush=True)
im_names = []
response = ''
text_outputs = []
for output in model_outputs:
if type(output) == str:
text_outputs.append(output)
response += output
elif type(output) == list:
response += '<br/>' # Add line break between images.
for image in output:
filename = save_image_to_local(image)
response += f'<img src="/file={filename}" style="display: inline-block;">'
response += '<br/>'
elif type(output) == Image.Image:
filename = save_image_to_local(output)
response += '<br/>'
response += f'<img src="/file={filename}" style="display: inline-block;">'
response += '<br/>'
# TODO(jykoh): Persist image inputs.
chat_history = model_inputs + \
[' '.join([s for s in model_outputs if type(s) == str]) + '\n']
# Remove [RET] from outputs.
conversation.append((input_text, response.replace('[RET]', '')))
# Set input image to None.
print('state', state, flush=True)
print('updated state', [conversation, chat_history, None], flush=True)
return [conversation, chat_history, None], conversation, gr.update(visible=True)
with gr.Blocks(css=css) as demo:
gr.Markdown(
'### Grounding Language Models to Images for Multimodal Generation'
)
gr.HTML("""
For faster inference without waiting in queue, you may duplicate the space and use your own GPU. <a href="https://huggingface.co/spaces/haoheliu/audioldm-text-to-audio-generation?duplicate=true"><img style="margin-top: 0em; margin-bottom: 0em" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
""")
gr_state = gr.State([[], [], None]) # chat_history, input_image
with gr.Row():
with gr.Column(scale=0.7, min_width=500):
with gr.Row():
chatbot = gr.Chatbot(elem_id="chatbot", label="FROMAGe Chatbot")
with gr.Row():
image_btn = gr.UploadButton("🖼️ Upload Image", file_types=["image"])
text_input = gr.Textbox(label="Message", placeholder="Type a message")
with gr.Column():
submit_btn = gr.Button(
"Submit", interactive=True, variant="primary")
clear_last_btn = gr.Button("Undo")
clear_btn = gr.Button("Reset All")
with gr.Row(visible=False) as share_group:
with gr.Group(elem_id="share-btn-container"):
community_icon = gr.HTML(community_icon_html)
loading_icon = gr.HTML(loading_icon_html)
share_button = gr.Button("Share to community", elem_id="share-btn")
with gr.Column(scale=0.3, min_width=200):
ret_scale_factor = gr.Slider(minimum=0.0, maximum=3.0, value=1.0, step=0.1, interactive=True,
label="Frequency multiplier for returning images (higher means more frequent)")
max_ret_images = gr.Number(
minimum=0, maximum=3, value=1, precision=1, interactive=True, label="Max images to return")
gr_max_len = gr.Slider(minimum=1, maximum=64, value=32,
step=1, interactive=True, label="Max # of words returned")
gr_temperature = gr.Slider(
minimum=0.0, maximum=1.0, value=0.0, interactive=True, label="Temperature (0 for deterministic, higher for more randomness)")
# gallery = gr.Gallery(
# value=examples, label="Example Conversations", show_label=True, elem_id="gallery",
# ).style(grid=[2], height="auto")
text_input.submit(generate_for_prompt, [text_input, gr_state, ret_scale_factor,
max_ret_images, gr_max_len, gr_temperature], [gr_state, chatbot, share_group])
text_input.submit(lambda: "", None, text_input) # Reset chatbox.
submit_btn.click(generate_for_prompt, [text_input, gr_state, ret_scale_factor,
max_ret_images, gr_max_len, gr_temperature], [gr_state, chatbot, share_group])
submit_btn.click(lambda: "", None, text_input) # Reset chatbox.
image_btn.upload(upload_image, [gr_state, image_btn], [gr_state, chatbot])
clear_last_btn.click(reset_last, [gr_state], [gr_state, chatbot])
clear_btn.click(reset, [], [gr_state, chatbot])
share_button.click(None, [], [], _js=share_js)
# demo.queue(concurrency_count=1, api_open=False, max_size=16)
demo.launch(debug=True, server_name="127.0.0.1")
|