Spaces:
Runtime error
Runtime error
Muennighoff
commited on
Commit
•
0d4db15
1
Parent(s):
569183a
Updates
Browse files
app.py
CHANGED
@@ -23,55 +23,160 @@ def get_blocks_party_spaces():
|
|
23 |
def make_clickable_model(model_name):
|
24 |
# remove user from model name
|
25 |
model_name_show = ' '.join(model_name.split('/')[1:])
|
26 |
-
|
27 |
link = "https://huggingface.co/" + model_name
|
28 |
-
return f'<a target="_blank" href="{link}">{model_name_show}</a>'
|
|
|
29 |
|
30 |
-
def get_mteb_data(task="Clustering", metric="v_measure"):
|
31 |
api = HfApi()
|
32 |
models = api.list_models(filter="mteb")
|
33 |
df_list = []
|
34 |
for model in models:
|
35 |
readme_path = hf_hub_download(model.modelId, filename="README.md")
|
36 |
meta = metadata_load(readme_path)
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
)
|
42 |
-
)
|
43 |
out = {k: v for d in out for k, v in d.items()}
|
44 |
-
|
45 |
-
# Turning it into HTML will make the formatting ugly
|
46 |
-
# make_clickable_model(model.modelId)
|
47 |
-
out["Model"] = model.modelId
|
48 |
df_list.append(out)
|
49 |
df = pd.DataFrame(df_list)
|
50 |
-
# Put Model
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
53 |
|
54 |
block = gr.Blocks()
|
55 |
|
56 |
with block:
|
57 |
gr.Markdown("""Leaderboard for XX most popular Blocks Event Spaces. To learn more and join, see <a href="https://huggingface.co/Gradio-Blocks" target="_blank" style="text-decoration: underline">Blocks Party Event</a>""")
|
58 |
with gr.Tabs():
|
59 |
-
with gr.TabItem("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
with gr.Row():
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
62 |
with gr.Row():
|
63 |
data_run = gr.Button("Refresh")
|
64 |
-
|
65 |
-
|
|
|
|
|
66 |
with gr.Row():
|
67 |
-
gr.Markdown("""Leaderboard for
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
with gr.Row():
|
69 |
-
|
|
|
|
|
|
|
|
|
70 |
with gr.Row():
|
71 |
data_run = gr.Button("Refresh")
|
72 |
-
|
73 |
-
|
74 |
-
data_run.click(get_mteb_data, inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
with gr.TabItem("Blocks Party Leaderboard2"):
|
76 |
with gr.Row():
|
77 |
data = gr.components.Dataframe(type="pandas")
|
@@ -79,7 +184,14 @@ with block:
|
|
79 |
data_run = gr.Button("Refresh")
|
80 |
data_run.click(get_blocks_party_spaces, inputs=None, outputs=data)
|
81 |
# running the function on page load in addition to when the button is clicked
|
82 |
-
block.load(get_mteb_data, inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
block.load(get_blocks_party_spaces, inputs=None, outputs=data)
|
84 |
|
85 |
block.launch()
|
|
|
23 |
def make_clickable_model(model_name):
|
24 |
# remove user from model name
|
25 |
model_name_show = ' '.join(model_name.split('/')[1:])
|
|
|
26 |
link = "https://huggingface.co/" + model_name
|
27 |
+
return f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name_show}</a>'
|
28 |
+
|
29 |
|
30 |
+
def get_mteb_data(task="Clustering", metric="v_measure", lang=None):
|
31 |
api = HfApi()
|
32 |
models = api.list_models(filter="mteb")
|
33 |
df_list = []
|
34 |
for model in models:
|
35 |
readme_path = hf_hub_download(model.modelId, filename="README.md")
|
36 |
meta = metadata_load(readme_path)
|
37 |
+
# Use "get" instead of dict indexing to ignore incompat metadata instead of erroring out
|
38 |
+
if lang is None:
|
39 |
+
out = list(
|
40 |
+
map(
|
41 |
+
lambda x: {x["dataset"]["name"].replace("MTEB ", ""): round(list(filter(lambda x: x["type"] == metric, x["metrics"]))[0]["value"], 2)},
|
42 |
+
filter(lambda x: x.get("task", {}).get("type", "") == task, meta["model-index"][0]["results"])
|
43 |
+
)
|
44 |
+
)
|
45 |
+
else:
|
46 |
+
# Multilingual
|
47 |
+
out = list(
|
48 |
+
map(
|
49 |
+
lambda x: {x["dataset"]["name"].replace("MTEB ", ""): round(list(filter(lambda x: x["type"] == metric, x["metrics"]))[0]["value"], 2)},
|
50 |
+
filter(lambda x: (x.get("task", {}).get("type", "") == task) and (x.get("dataset", {}).get("config", "") in ("default", *lang)), meta["model-index"][0]["results"])
|
51 |
+
)
|
52 |
)
|
|
|
53 |
out = {k: v for d in out for k, v in d.items()}
|
54 |
+
out["Model"] = make_clickable_model(model.modelId)
|
|
|
|
|
|
|
55 |
df_list.append(out)
|
56 |
df = pd.DataFrame(df_list)
|
57 |
+
# Put 'Model' column first
|
58 |
+
cols = sorted(list(df.columns))
|
59 |
+
cols.insert(0, cols.pop(cols.index("Model")))
|
60 |
+
df = df[cols]
|
61 |
+
|
62 |
+
df.fillna('', inplace=True)
|
63 |
+
return df.astype(str) # Cast to str as Gradio does not accept floats
|
64 |
|
65 |
block = gr.Blocks()
|
66 |
|
67 |
with block:
|
68 |
gr.Markdown("""Leaderboard for XX most popular Blocks Event Spaces. To learn more and join, see <a href="https://huggingface.co/Gradio-Blocks" target="_blank" style="text-decoration: underline">Blocks Party Event</a>""")
|
69 |
with gr.Tabs():
|
70 |
+
with gr.TabItem("Classification"):
|
71 |
+
with gr.TabItem("English"):
|
72 |
+
with gr.Row():
|
73 |
+
gr.Markdown("""Leaderboard for Classification""")
|
74 |
+
with gr.Row():
|
75 |
+
data_classification_en = gr.components.Dataframe(
|
76 |
+
datatype=["markdown"] * 500,
|
77 |
+
type="pandas",
|
78 |
+
col_count=(13, "fixed"),
|
79 |
+
)
|
80 |
+
with gr.Row():
|
81 |
+
data_run = gr.Button("Refresh")
|
82 |
+
task_classification_en = gr.Variable(value="Classification")
|
83 |
+
metric_classification_en = gr.Variable(value="accuracy")
|
84 |
+
lang_classification_en = gr.Variable(value=["en"])
|
85 |
+
data_run.click(get_mteb_data, inputs=[task_classification_en, metric_classification_en, lang_classification_en], outputs=data_classification_en)
|
86 |
+
with gr.TabItem("Multilingual"):
|
87 |
+
with gr.Row():
|
88 |
+
gr.Markdown("""Multilingual Classification""")
|
89 |
+
with gr.Row():
|
90 |
+
data_classification = gr.components.Dataframe(
|
91 |
+
datatype=["markdown"] * 500,
|
92 |
+
type="pandas",
|
93 |
+
)
|
94 |
+
with gr.Row():
|
95 |
+
data_run = gr.Button("Refresh")
|
96 |
+
task_classification = gr.Variable(value="Classification")
|
97 |
+
metric_classification = gr.Variable(value="accuracy")
|
98 |
+
data_run.click(get_mteb_data, inputs=[task_classification, metric_classification], outputs=data_classification)
|
99 |
+
with gr.TabItem("Clustering"):
|
100 |
with gr.Row():
|
101 |
+
gr.Markdown("""Leaderboard for Clustering""")
|
102 |
+
with gr.Row():
|
103 |
+
data_clustering = gr.components.Dataframe(
|
104 |
+
datatype=["markdown"] * 500,
|
105 |
+
type="pandas",
|
106 |
+
)
|
107 |
with gr.Row():
|
108 |
data_run = gr.Button("Refresh")
|
109 |
+
task_clustering = gr.Variable(value="Clustering")
|
110 |
+
metric_clustering = gr.Variable(value="v_measure")
|
111 |
+
data_run.click(get_mteb_data, inputs=[task_clustering, metric_clustering], outputs=data_clustering)
|
112 |
+
with gr.TabItem("Retrieval"):
|
113 |
with gr.Row():
|
114 |
+
gr.Markdown("""Leaderboard for Retrieval""")
|
115 |
+
with gr.Row():
|
116 |
+
data_retrieval = gr.components.Dataframe(
|
117 |
+
datatype=["markdown"] * 500,
|
118 |
+
type="pandas",
|
119 |
+
)
|
120 |
+
with gr.Row():
|
121 |
+
data_run = gr.Button("Refresh")
|
122 |
+
task_retrieval = gr.Variable(value="Retrieval")
|
123 |
+
metric_retrieval = gr.Variable(value="ndcg_at_10")
|
124 |
+
data_run.click(get_mteb_data, inputs=[task_retrieval, metric_retrieval], outputs=data_retrieval)
|
125 |
+
with gr.TabItem("Reranking"):
|
126 |
+
with gr.Row():
|
127 |
+
gr.Markdown("""Leaderboard for Reranking""")
|
128 |
with gr.Row():
|
129 |
+
data_reranking = gr.components.Dataframe(
|
130 |
+
datatype=["markdown"] * 500,
|
131 |
+
type="pandas",
|
132 |
+
#col_count=(12, "fixed"),
|
133 |
+
)
|
134 |
with gr.Row():
|
135 |
data_run = gr.Button("Refresh")
|
136 |
+
task_reranking = gr.Variable(value="Reranking")
|
137 |
+
metric_reranking = gr.Variable(value="map")
|
138 |
+
data_run.click(get_mteb_data, inputs=[task_reranking, metric_reranking], outputs=data_reranking)
|
139 |
+
with gr.TabItem("STS"):
|
140 |
+
with gr.TabItem("English"):
|
141 |
+
with gr.Row():
|
142 |
+
gr.Markdown("""Leaderboard for STS""")
|
143 |
+
with gr.Row():
|
144 |
+
data_sts_en = gr.components.Dataframe(
|
145 |
+
datatype=["markdown"] * 500,
|
146 |
+
type="pandas",
|
147 |
+
)
|
148 |
+
with gr.Row():
|
149 |
+
data_run_en = gr.Button("Refresh")
|
150 |
+
task_sts_en = gr.Variable(value="STS")
|
151 |
+
metric_sts_en = gr.Variable(value="cos_sim_spearman")
|
152 |
+
lang_sts_en = gr.Variable(value=["en", "en-en"])
|
153 |
+
data_run.click(get_mteb_data, inputs=[task_sts_en, metric_sts_en, lang_sts_en], outputs=data_sts_en)
|
154 |
+
with gr.TabItem("Multilingual"):
|
155 |
+
with gr.Row():
|
156 |
+
gr.Markdown("""Leaderboard for STS""")
|
157 |
+
with gr.Row():
|
158 |
+
data_sts = gr.components.Dataframe(
|
159 |
+
datatype=["markdown"] * 500,
|
160 |
+
type="pandas",
|
161 |
+
)
|
162 |
+
with gr.Row():
|
163 |
+
data_run = gr.Button("Refresh")
|
164 |
+
task_sts = gr.Variable(value="STS")
|
165 |
+
metric_sts = gr.Variable(value="cos_sim_spearman")
|
166 |
+
data_run.click(get_mteb_data, inputs=[task_sts, metric_sts], outputs=data_sts)
|
167 |
+
with gr.TabItem("Summarization"):
|
168 |
+
with gr.Row():
|
169 |
+
gr.Markdown("""Leaderboard for Summarization""")
|
170 |
+
with gr.Row():
|
171 |
+
data_summarization = gr.components.Dataframe(
|
172 |
+
datatype=["markdown"] * 500,
|
173 |
+
type="pandas",
|
174 |
+
)
|
175 |
+
with gr.Row():
|
176 |
+
data_run = gr.Button("Refresh")
|
177 |
+
task_summarization = gr.Variable(value="Summarization")
|
178 |
+
metric_summarization = gr.Variable(value="cos_sim_spearman")
|
179 |
+
data_run.click(get_mteb_data, inputs=[task_summarization, metric_summarization], outputs=data_summarization)
|
180 |
with gr.TabItem("Blocks Party Leaderboard2"):
|
181 |
with gr.Row():
|
182 |
data = gr.components.Dataframe(type="pandas")
|
|
|
184 |
data_run = gr.Button("Refresh")
|
185 |
data_run.click(get_blocks_party_spaces, inputs=None, outputs=data)
|
186 |
# running the function on page load in addition to when the button is clicked
|
187 |
+
block.load(get_mteb_data, inputs=[task_classification_en, metric_classification_en], outputs=data_classification_en)
|
188 |
+
block.load(get_mteb_data, inputs=[task_classification, metric_classification], outputs=data_classification)
|
189 |
+
block.load(get_mteb_data, inputs=[task_clustering, metric_clustering], outputs=data_clustering)
|
190 |
+
block.load(get_mteb_data, inputs=[task_retrieval, metric_retrieval], outputs=data_retrieval)
|
191 |
+
block.load(get_mteb_data, inputs=[task_reranking, metric_reranking], outputs=data_reranking)
|
192 |
+
block.load(get_mteb_data, inputs=[task_sts, metric_sts], outputs=data_sts)
|
193 |
+
block.load(get_mteb_data, inputs=[task_summarization, metric_summarization], outputs=data_summarization)
|
194 |
+
|
195 |
block.load(get_blocks_party_spaces, inputs=None, outputs=data)
|
196 |
|
197 |
block.launch()
|