Spaces:
Sleeping
Sleeping
added whisper library
Browse files
app.py
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
-
from transformers import pipeline
|
2 |
-
from
|
3 |
-
from multilingual_translation import translate
|
4 |
from utils import lang_ids
|
5 |
import gradio as gr
|
6 |
-
import torch
|
7 |
|
8 |
biogpt_model_list = [
|
9 |
"microsoft/biogpt",
|
@@ -16,27 +14,70 @@ lang_model_list = [
|
|
16 |
"facebook/m2m100_418M"
|
17 |
]
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
lang_list = list(lang_ids.keys())
|
20 |
|
21 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
if base_lang == "English":
|
23 |
-
return
|
24 |
else:
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
|
|
30 |
prompt: str,
|
31 |
biogpt_model_id: str,
|
32 |
-
|
33 |
-
num_return_sequences: int,
|
34 |
base_lang: str,
|
35 |
-
lang_model_id: str
|
36 |
):
|
37 |
-
|
38 |
en_prompt = translate_to_english(prompt, lang_model_id, base_lang)
|
39 |
generator = pipeline("text-generation", model=biogpt_model_id, device="cuda:0")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
output = generator(en_prompt, max_length=max_length, num_return_sequences=num_return_sequences, do_sample=True)
|
41 |
output_dict = {}
|
42 |
for i in range(num_return_sequences):
|
@@ -46,50 +87,47 @@ def biogpt(
|
|
46 |
for i in range(num_return_sequences):
|
47 |
output_text += f'{output_dict[str(i+1)]}\n\n'
|
48 |
|
49 |
-
|
50 |
-
base_lang_output = output_text
|
51 |
-
|
52 |
-
else:
|
53 |
-
base_lang_output_ = ""
|
54 |
-
for i in range(num_return_sequences):
|
55 |
-
base_lang_output_ += f'{translate(lang_model_id, output_dict[str(i+1)], "en", lang_ids[base_lang])[0]}\n\n'
|
56 |
-
base_lang_output = base_lang_output_
|
57 |
-
|
58 |
-
|
59 |
-
return en_prompt, output_text, base_lang_output
|
60 |
-
|
61 |
-
|
62 |
-
inputs = [
|
63 |
-
gr.Textbox(lines=5, value="COVID-19 is", label="Prompt"),
|
64 |
-
gr.Dropdown(biogpt_model_list, value="microsoft/biogpt", label="BioGPT Model ID"),
|
65 |
-
gr.Slider(minumum=1, maximum=100, value=25, step=1, label="Max Length"),
|
66 |
-
gr.Slider(minumum=1, maximum=10, value=2, step=1, label="Number of Outputs"),
|
67 |
-
gr.Dropdown(lang_list, value="English", label="Base Language"),
|
68 |
-
gr.Dropdown(lang_model_list, value="facebook/m2m100_418M", label="Language Model ID")
|
69 |
-
]
|
70 |
-
|
71 |
-
outputs = [
|
72 |
-
gr.outputs.Textbox(label="Prompt"),
|
73 |
-
gr.outputs.Textbox(label="Output"),
|
74 |
-
gr.outputs.Textbox(label="Translated Output")
|
75 |
-
]
|
76 |
|
77 |
examples = [
|
78 |
-
["COVID-19 is",
|
79 |
-
["Kanser", "microsoft/biogpt", 25, 2, "Turkish", "facebook/m2m100_1.2B"]
|
80 |
]
|
81 |
|
82 |
title = "M2M100 + BioGPT: Generative Pre-trained Transformer for Biomedical Text Generation and Mining"
|
83 |
|
84 |
description = "BioGPT is a domain-specific generative pre-trained Transformer language model for biomedical text generation and mining. BioGPT follows the Transformer language model backbone, and is pre-trained on 15M PubMed abstracts from scratch. Github: github.com/microsoft/BioGPT Paper: https://arxiv.org/abs/2210.10341"
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
from multilingual_translation import text_to_text_generation
|
|
|
3 |
from utils import lang_ids
|
4 |
import gradio as gr
|
|
|
5 |
|
6 |
biogpt_model_list = [
|
7 |
"microsoft/biogpt",
|
|
|
14 |
"facebook/m2m100_418M"
|
15 |
]
|
16 |
|
17 |
+
whisper_model_list = [
|
18 |
+
"openai/whisper-small",
|
19 |
+
"openai/whisper-medium",
|
20 |
+
"openai/whisper-tiny",
|
21 |
+
"openai/whisper-large"
|
22 |
+
]
|
23 |
+
|
24 |
lang_list = list(lang_ids.keys())
|
25 |
|
26 |
+
def whisper_demo(input_audio, model_id):
|
27 |
+
pipe = pipeline(task="automatic-speech-recognition",model=model_id, device='cuda:0')
|
28 |
+
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language='en', task="transcribe")
|
29 |
+
output_text = pipe(input_audio)['text']
|
30 |
+
return output_text
|
31 |
+
|
32 |
+
|
33 |
+
def translate_to_english(prompt, lang_model_id, base_lang):
|
34 |
if base_lang == "English":
|
35 |
+
return prompt
|
36 |
else:
|
37 |
+
text_output = text_to_text_generation(
|
38 |
+
prompt=prompt,
|
39 |
+
model_id=lang_model_id,
|
40 |
+
device='cuda:0',
|
41 |
+
target_lang='en'
|
42 |
+
)
|
43 |
+
|
44 |
+
return text_output[0]
|
45 |
|
46 |
+
|
47 |
+
def biogpt_text(
|
48 |
prompt: str,
|
49 |
biogpt_model_id: str,
|
50 |
+
lang_model_id: str,
|
|
|
51 |
base_lang: str,
|
|
|
52 |
):
|
53 |
+
|
54 |
en_prompt = translate_to_english(prompt, lang_model_id, base_lang)
|
55 |
generator = pipeline("text-generation", model=biogpt_model_id, device="cuda:0")
|
56 |
+
output = generator(en_prompt, max_length=250, num_return_sequences=1, do_sample=True)
|
57 |
+
output = output[0]['generated_text']
|
58 |
+
if base_lang == "English":
|
59 |
+
output_text = output
|
60 |
+
|
61 |
+
else:
|
62 |
+
output_text = text_to_text_generation(
|
63 |
+
prompt=output,
|
64 |
+
model_id=lang_model_id,
|
65 |
+
device='cuda:0',
|
66 |
+
target_lang=base_lang
|
67 |
+
)
|
68 |
+
|
69 |
+
return en_prompt, output, output_text
|
70 |
+
|
71 |
+
|
72 |
+
def biogpt_audio(
|
73 |
+
input_audio: str,
|
74 |
+
biogpt_model_id: str,
|
75 |
+
whisper_model_id: str,
|
76 |
+
max_length: str,
|
77 |
+
num_return_sequences: int
|
78 |
+
):
|
79 |
+
en_prompt = whisper_demo(input_audio=input_audio, model_id=whisper_model_id)
|
80 |
+
generator = pipeline("text-generation", model=biogpt_model_id, device="cuda:0")
|
81 |
output = generator(en_prompt, max_length=max_length, num_return_sequences=num_return_sequences, do_sample=True)
|
82 |
output_dict = {}
|
83 |
for i in range(num_return_sequences):
|
|
|
87 |
for i in range(num_return_sequences):
|
88 |
output_text += f'{output_dict[str(i+1)]}\n\n'
|
89 |
|
90 |
+
return en_prompt, output_text, output_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
examples = [
|
93 |
+
["COVID-19 is", biogpt_model_list[0], lang_model_list[1], "English"]
|
|
|
94 |
]
|
95 |
|
96 |
title = "M2M100 + BioGPT: Generative Pre-trained Transformer for Biomedical Text Generation and Mining"
|
97 |
|
98 |
description = "BioGPT is a domain-specific generative pre-trained Transformer language model for biomedical text generation and mining. BioGPT follows the Transformer language model backbone, and is pre-trained on 15M PubMed abstracts from scratch. Github: github.com/microsoft/BioGPT Paper: https://arxiv.org/abs/2210.10341"
|
99 |
|
100 |
+
app = gr.Blocks()
|
101 |
+
with app:
|
102 |
+
gr.Markdown("# **<p align='center'>AnimeSR: Learning Real-World Super-Resolution Models for Animation Videos</p>**")
|
103 |
+
gr.Markdown(
|
104 |
+
"""
|
105 |
+
<p style='text-align: center'>
|
106 |
+
Follow me for more!
|
107 |
+
<br> <a href='https://twitter.com/kadirnar_ai' target='_blank'>twitter</a> | <a href='https://github.com/kadirnar' target='_blank'>github</a> | <a href='https://www.linkedin.com/in/kadir-nar/' target='_blank'>linkedin</a> |
|
108 |
+
</p>
|
109 |
+
"""
|
110 |
+
)
|
111 |
+
with gr.Row():
|
112 |
+
with gr.Column():
|
113 |
+
with gr.Tab("Text"):
|
114 |
+
input_text = gr.Textbox(lines=3, value="COVID-19 is", label="Text")
|
115 |
+
input_text_button = gr.Button(value="Predict")
|
116 |
+
input_biogpt_model =gr.Dropdown(choices=biogpt_model_list, value=biogpt_model_list[0], label='BioGpt Model')
|
117 |
+
input_m2m100_model =gr.Dropdown(choices=lang_model_list, value=lang_model_list[1], label='Language Model')
|
118 |
+
input_base_lang = gr.Dropdown(lang_list, value="English", label="Base Language")
|
119 |
+
|
120 |
+
with gr.Tab("Audio"):
|
121 |
+
input_audio = gr.Microphone(label='Audio')
|
122 |
+
input_audio_button = gr.Button(value="Predict")
|
123 |
+
|
124 |
+
with gr.Column():
|
125 |
+
prompt_text = gr.Textbox(lines=3, label="Prompt")
|
126 |
+
output_text = gr.Textbox(lines=3, label="BioGpt Text")
|
127 |
+
translated_text = gr.Textbox(lines=3,label="Translated Text")
|
128 |
+
|
129 |
+
gr.Examples(examples, inputs=[input_text, input_biogpt_model, input_m2m100_model,input_base_lang], outputs=[prompt_text, output_text, translated_text], fn=biogpt_text, cache_examples=True)
|
130 |
+
input_text_button.click(biogpt_text, inputs=[input_text, input_biogpt_model, input_m2m100_model,input_base_lang], outputs=[prompt_text, output_text, translated_text])
|
131 |
+
input_audio_button.click(biogpt_audio, inputs=[input_audio, input_biogpt_model,input_m2m100_model,input_base_lang], outputs=[prompt_text, output_text, translated_text])
|
132 |
+
|
133 |
+
app.launch()
|