Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -28,7 +28,7 @@ def whisper_demo(input_audio, model_id):
|
|
28 |
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language='en', task="transcribe")
|
29 |
output_text = pipe(input_audio)['text']
|
30 |
return output_text
|
31 |
-
|
32 |
|
33 |
def translate_to_english(prompt, lang_model_id, base_lang):
|
34 |
if base_lang == "English":
|
@@ -73,21 +73,24 @@ def biogpt_audio(
|
|
73 |
input_audio: str,
|
74 |
biogpt_model_id: str,
|
75 |
whisper_model_id: str,
|
76 |
-
|
77 |
-
|
78 |
):
|
79 |
en_prompt = whisper_demo(input_audio=input_audio, model_id=whisper_model_id)
|
80 |
generator = pipeline("text-generation", model=biogpt_model_id, device="cuda:0")
|
81 |
-
output = generator(en_prompt, max_length=
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
91 |
|
92 |
examples = [
|
93 |
["COVID-19 is", biogpt_model_list[0], lang_model_list[1], "English"]
|
@@ -95,7 +98,7 @@ examples = [
|
|
95 |
|
96 |
app = gr.Blocks()
|
97 |
with app:
|
98 |
-
gr.Markdown("# **<h4 align='center'>Whisper + M2M100 + BioGPT: Generative Pre-trained Transformer for Biomedical Text Generation and Mining
|
99 |
gr.Markdown(
|
100 |
"""
|
101 |
<p style='text-align: center'>
|
@@ -109,12 +112,16 @@ with app:
|
|
109 |
with gr.Tab("Text"):
|
110 |
input_text = gr.Textbox(lines=3, value="COVID-19 is", label="Text")
|
111 |
input_text_button = gr.Button(value="Predict")
|
112 |
-
input_biogpt_model =gr.Dropdown(choices=biogpt_model_list, value=biogpt_model_list[0], label='BioGpt Model')
|
113 |
-
input_m2m100_model =gr.Dropdown(choices=lang_model_list, value=lang_model_list[1], label='Language Model')
|
114 |
input_base_lang = gr.Dropdown(lang_list, value="English", label="Base Language")
|
115 |
|
116 |
with gr.Tab("Audio"):
|
117 |
-
input_audio = gr.
|
|
|
|
|
|
|
|
|
118 |
input_audio_button = gr.Button(value="Predict")
|
119 |
|
120 |
with gr.Column():
|
@@ -124,6 +131,6 @@ with app:
|
|
124 |
|
125 |
gr.Examples(examples, inputs=[input_text, input_biogpt_model, input_m2m100_model,input_base_lang], outputs=[prompt_text, output_text, translated_text], fn=biogpt_text, cache_examples=False)
|
126 |
input_text_button.click(biogpt_text, inputs=[input_text, input_biogpt_model, input_m2m100_model,input_base_lang], outputs=[prompt_text, output_text, translated_text])
|
127 |
-
input_audio_button.click(biogpt_audio, inputs=[input_audio, input_biogpt_model,
|
128 |
|
129 |
app.launch()
|
|
|
28 |
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language='en', task="transcribe")
|
29 |
output_text = pipe(input_audio)['text']
|
30 |
return output_text
|
31 |
+
|
32 |
|
33 |
def translate_to_english(prompt, lang_model_id, base_lang):
|
34 |
if base_lang == "English":
|
|
|
73 |
input_audio: str,
|
74 |
biogpt_model_id: str,
|
75 |
whisper_model_id: str,
|
76 |
+
base_lang: str,
|
77 |
+
lang_model_id: str,
|
78 |
):
|
79 |
en_prompt = whisper_demo(input_audio=input_audio, model_id=whisper_model_id)
|
80 |
generator = pipeline("text-generation", model=biogpt_model_id, device="cuda:0")
|
81 |
+
output = generator(en_prompt, max_length=250, num_return_sequences=1, do_sample=True)
|
82 |
+
if base_lang == "English":
|
83 |
+
output_text = output
|
84 |
+
|
85 |
+
else:
|
86 |
+
output_text = text_to_text_generation(
|
87 |
+
prompt=output,
|
88 |
+
model_id=lang_model_id,
|
89 |
+
device='cuda:0',
|
90 |
+
target_lang=lang_ids[base_lang]
|
91 |
+
)
|
92 |
+
|
93 |
+
return en_prompt, output, output_text
|
94 |
|
95 |
examples = [
|
96 |
["COVID-19 is", biogpt_model_list[0], lang_model_list[1], "English"]
|
|
|
98 |
|
99 |
app = gr.Blocks()
|
100 |
with app:
|
101 |
+
gr.Markdown("# **<h4 align='center'>Whisper + M2M100 + BioGPT: Generative Pre-trained Transformer for Biomedical Text Generation and Mining<h4>**")
|
102 |
gr.Markdown(
|
103 |
"""
|
104 |
<p style='text-align: center'>
|
|
|
112 |
with gr.Tab("Text"):
|
113 |
input_text = gr.Textbox(lines=3, value="COVID-19 is", label="Text")
|
114 |
input_text_button = gr.Button(value="Predict")
|
115 |
+
input_biogpt_model = gr.Dropdown(choices=biogpt_model_list, value=biogpt_model_list[0], label='BioGpt Model')
|
116 |
+
input_m2m100_model = gr.Dropdown(choices=lang_model_list, value=lang_model_list[1], label='Language Model')
|
117 |
input_base_lang = gr.Dropdown(lang_list, value="English", label="Base Language")
|
118 |
|
119 |
with gr.Tab("Audio"):
|
120 |
+
input_audio = gr.Audio(source="microphone", type="filepath")
|
121 |
+
input_biogpt_model = gr.Dropdown(choices=biogpt_model_list, value=biogpt_model_list[0], label='BioGpt Model')
|
122 |
+
input_whisper_model = gr.Dropdown(choices=whisper_model_list, value=whisper_model_list[0], label='Audio Model')
|
123 |
+
input_base_lang = gr.Dropdown(lang_list, value="English", label="Base Language")
|
124 |
+
input_m2m100_model = gr.Dropdown(choices=lang_model_list, value=lang_model_list[1], label='Language Model')
|
125 |
input_audio_button = gr.Button(value="Predict")
|
126 |
|
127 |
with gr.Column():
|
|
|
131 |
|
132 |
gr.Examples(examples, inputs=[input_text, input_biogpt_model, input_m2m100_model,input_base_lang], outputs=[prompt_text, output_text, translated_text], fn=biogpt_text, cache_examples=False)
|
133 |
input_text_button.click(biogpt_text, inputs=[input_text, input_biogpt_model, input_m2m100_model,input_base_lang], outputs=[prompt_text, output_text, translated_text])
|
134 |
+
input_audio_button.click(biogpt_audio, inputs=[input_audio, input_biogpt_model,input_whisper_model,input_base_lang], outputs=[prompt_text, output_text, translated_text])
|
135 |
|
136 |
app.launch()
|