Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from ultralytics import YOLOv10 | |
import supervision as sv | |
import spaces | |
from huggingface_hub import hf_hub_download | |
def download_models(model_id): | |
hf_hub_download("kadirnar/yolov10", filename=f"{model_id}", local_dir=f"./") | |
return f"./{model_id}" | |
MODEL_PATH = 'yolov10n.pt' | |
model = YOLOv10(MODEL_PATH) | |
box_annotator = sv.BoxAnnotator() | |
def detect(image, model_id, image_size, conf_threshold, iou_threshold): | |
model_path = download_models(model_id) | |
results = model(source=image, imgsz=image_size, iou=iou_threshold, conf=conf_threshold, verbose=False)[0] | |
detections = sv.Detections.from_ultralytics(results) | |
labels = [ | |
f"{model.model.names[class_id]} {confidence:.2f}" | |
for class_id, confidence in zip(detections.class_id, detections.confidence) | |
] | |
annotated_image = box_annotator.annotate(image, detections=detections, labels=labels) | |
return annotated_image | |
def app(): | |
with gr.Blocks(): | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.Image(type="numpy", label="Image") | |
model_id = gr.Dropdown( | |
label="Model", | |
choices=[ | |
"yolov10n.pt", | |
"yolov10s.pt", | |
"yolov10m.pt", | |
"yolov10b.pt", | |
"yolov10x.pt", | |
], | |
value="yolov10s.pt", | |
) | |
image_size = gr.Slider( | |
label="Image Size", | |
minimum=320, | |
maximum=1280, | |
step=32, | |
value=640, | |
) | |
conf_threshold = gr.Slider( | |
label="Confidence Threshold", | |
minimum=0.1, | |
maximum=1.0, | |
step=0.1, | |
value=0.25, | |
) | |
iou_threshold = gr.Slider( | |
label="IoU Threshold", | |
minimum=0.1, | |
maximum=1.0, | |
step=0.1, | |
value=0.45, | |
) | |
yolov10_infer = gr.Button(value="Detect Objects") | |
with gr.Column(): | |
output_image = gr.Image(type="numpy", label="Annotated Image") | |
yolov10_infer.click( | |
fn=yolov10_inference, | |
inputs=[ | |
image, | |
model_id, | |
image_size, | |
conf_threshold, | |
iou_threshold, | |
], | |
outputs=[output_image], | |
) | |
gr.Examples( | |
examples=[ | |
[ | |
"images/example1.jpg", | |
"yolov10s.pt", | |
640, | |
0.25, | |
0.45, | |
], | |
[ | |
"images/example2.jpg", | |
"yolov10m.pt", | |
640, | |
0.25, | |
0.45, | |
], | |
], | |
fn=yolov10_inference, | |
inputs=[ | |
image, | |
model_path, | |
image_size, | |
conf_threshold, | |
iou_threshold, | |
], | |
outputs=[output_image], | |
cache_examples=True, | |
) | |
gradio_app = gr.Blocks() | |
with gradio_app: | |
gr.Markdown( | |
""" | |
# YOLOv10: State-of-the-Art Object Detection | |
""" | |
) | |
gr.Markdown( | |
""" | |
Detect objects in images using the YOLOv10 model. Select a pre-trained model, adjust the inference settings, and upload an image to see the detected objects. | |
""" | |
) | |
with gr.Row(): | |
gr.Markdown( | |
""" | |
Follow me for more projects and updates: | |
- [Twitter](https://twitter.com/kadirnar_ai) | |
- [GitHub](https://github.com/kadirnar) | |
- [LinkedIn](https://www.linkedin.com/in/kadir-nar/) | |
- [HuggingFace](https://www.huggingface.co/kadirnar/) | |
""" | |
) | |
app() | |
gradio_app.launch(debug=True) |