Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -12,11 +12,11 @@ def download_models(model_id):
|
|
12 |
MODEL_PATH = 'yolov10n.pt'
|
13 |
model = YOLOv10(MODEL_PATH)
|
14 |
box_annotator = sv.BoxAnnotator()
|
15 |
-
model_path = download_models(model_id)
|
16 |
|
17 |
@spaces.GPU(duration=200)
|
18 |
-
def detect(image):
|
19 |
-
|
|
|
20 |
detections = sv.Detections.from_ultralytics(results)
|
21 |
|
22 |
labels = [
|
@@ -27,29 +27,113 @@ def detect(image):
|
|
27 |
|
28 |
return annotated_image
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
gradio_app = gr.Blocks()
|
31 |
with gradio_app:
|
32 |
-
gr.
|
33 |
"""
|
34 |
-
|
35 |
-
YOLOv10: Real-Time End-to-End Object Detection
|
36 |
-
</h1>
|
37 |
-
""")
|
38 |
-
gr.HTML(
|
39 |
"""
|
40 |
-
<h3 style='text-align: center'>
|
41 |
-
Follow me for more!
|
42 |
-
<a href='https://twitter.com/kadirnar_ai' target='_blank'>Twitter</a> | <a href='https://github.com/kadirnar' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/kadir-nar/' target='_blank'>Linkedin</a> | <a href='https://www.huggingface.co/kadirnar/' target='_blank'>HuggingFace</a>
|
43 |
-
</h3>
|
44 |
-
""")
|
45 |
-
|
46 |
-
input_image = gr.Image(type="numpy")
|
47 |
-
output_image = gr.Image(type="numpy", label="Annotated Image")
|
48 |
-
|
49 |
-
gr.Interface(
|
50 |
-
fn=detect,
|
51 |
-
inputs=input_image,
|
52 |
-
outputs=output_image,
|
53 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
gradio_app.launch()
|
|
|
12 |
MODEL_PATH = 'yolov10n.pt'
|
13 |
model = YOLOv10(MODEL_PATH)
|
14 |
box_annotator = sv.BoxAnnotator()
|
|
|
15 |
|
16 |
@spaces.GPU(duration=200)
|
17 |
+
def detect(image, model_id, image_size, conf_threshold, iou_threshold):
|
18 |
+
model_path = download_models(model_id)
|
19 |
+
results = model(source=image, conf=conf, imgsz=image_size, iou, verbose=False)[0]
|
20 |
detections = sv.Detections.from_ultralytics(results)
|
21 |
|
22 |
labels = [
|
|
|
27 |
|
28 |
return annotated_image
|
29 |
|
30 |
+
def app():
|
31 |
+
with gr.Blocks():
|
32 |
+
with gr.Row():
|
33 |
+
with gr.Column():
|
34 |
+
image = gr.Image(type="numpy", label="Image")
|
35 |
+
|
36 |
+
model_id = gr.Dropdown(
|
37 |
+
label="Model",
|
38 |
+
choices=[
|
39 |
+
"yolov10n.pt",
|
40 |
+
"yolov10s.pt",
|
41 |
+
"yolov10m.pt",
|
42 |
+
"yolov10b.pt",
|
43 |
+
"yolov10x.pt",
|
44 |
+
],
|
45 |
+
value="yolov10s.pt",
|
46 |
+
)
|
47 |
+
image_size = gr.Slider(
|
48 |
+
label="Image Size",
|
49 |
+
minimum=320,
|
50 |
+
maximum=1280,
|
51 |
+
step=32,
|
52 |
+
value=640,
|
53 |
+
)
|
54 |
+
conf_threshold = gr.Slider(
|
55 |
+
label="Confidence Threshold",
|
56 |
+
minimum=0.1,
|
57 |
+
maximum=1.0,
|
58 |
+
step=0.1,
|
59 |
+
value=0.25,
|
60 |
+
)
|
61 |
+
iou_threshold = gr.Slider(
|
62 |
+
label="IoU Threshold",
|
63 |
+
minimum=0.1,
|
64 |
+
maximum=1.0,
|
65 |
+
step=0.1,
|
66 |
+
value=0.45,
|
67 |
+
)
|
68 |
+
yolov10_infer = gr.Button(value="Detect Objects")
|
69 |
+
|
70 |
+
with gr.Column():
|
71 |
+
output_image = gr.Image(type="numpy", label="Annotated Image")
|
72 |
+
|
73 |
+
yolov10_infer.click(
|
74 |
+
fn=yolov10_inference,
|
75 |
+
inputs=[
|
76 |
+
image,
|
77 |
+
model_id,
|
78 |
+
image_size,
|
79 |
+
conf_threshold,
|
80 |
+
iou_threshold,
|
81 |
+
],
|
82 |
+
outputs=[output_image],
|
83 |
+
)
|
84 |
+
|
85 |
+
gr.Examples(
|
86 |
+
examples=[
|
87 |
+
[
|
88 |
+
"images/example1.jpg",
|
89 |
+
"yolov10s.pt",
|
90 |
+
640,
|
91 |
+
0.25,
|
92 |
+
0.45,
|
93 |
+
],
|
94 |
+
[
|
95 |
+
"images/example2.jpg",
|
96 |
+
"yolov10m.pt",
|
97 |
+
640,
|
98 |
+
0.25,
|
99 |
+
0.45,
|
100 |
+
],
|
101 |
+
],
|
102 |
+
fn=yolov10_inference,
|
103 |
+
inputs=[
|
104 |
+
image,
|
105 |
+
model_path,
|
106 |
+
image_size,
|
107 |
+
conf_threshold,
|
108 |
+
iou_threshold,
|
109 |
+
],
|
110 |
+
outputs=[output_image],
|
111 |
+
cache_examples=True,
|
112 |
+
)
|
113 |
+
|
114 |
gradio_app = gr.Blocks()
|
115 |
with gradio_app:
|
116 |
+
gr.Markdown(
|
117 |
"""
|
118 |
+
# YOLOv10: State-of-the-Art Object Detection
|
|
|
|
|
|
|
|
|
119 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
)
|
121 |
+
gr.Markdown(
|
122 |
+
"""
|
123 |
+
Detect objects in images using the YOLOv10 model. Select a pre-trained model, adjust the inference settings, and upload an image to see the detected objects.
|
124 |
+
"""
|
125 |
+
)
|
126 |
+
with gr.Row():
|
127 |
+
gr.Markdown(
|
128 |
+
"""
|
129 |
+
Follow me for more projects and updates:
|
130 |
+
- [Twitter](https://twitter.com/kadirnar_ai)
|
131 |
+
- [GitHub](https://github.com/kadirnar)
|
132 |
+
- [LinkedIn](https://www.linkedin.com/in/kadir-nar/)
|
133 |
+
- [HuggingFace](https://www.huggingface.co/kadirnar/)
|
134 |
+
"""
|
135 |
+
)
|
136 |
+
|
137 |
+
app()
|
138 |
|
139 |
+
gradio_app.launch(debug=True)
|