import gradio as gr from ultralytics import YOLOv10 import supervision as sv import spaces from huggingface_hub import hf_hub_download def download_models(model_id): hf_hub_download("kadirnar/yolov10", filename=f"{model_id}", local_dir=f"./") return f"./{model_id}" MODEL_PATH = 'yolov10n.pt' model = YOLOv10(MODEL_PATH) box_annotator = sv.BoxAnnotator() @spaces.GPU(duration=200) def detect(image, model_id, image_size, conf_threshold, iou_threshold): model_path = download_models(model_id) results = model(source=image, imgsz=image_size, iou=iou_threshold, conf=conf_threshold, verbose=False)[0] detections = sv.Detections.from_ultralytics(results) labels = [ f"{model.model.names[class_id]} {confidence:.2f}" for class_id, confidence in zip(detections.class_id, detections.confidence) ] annotated_image = box_annotator.annotate(image, detections=detections, labels=labels) return annotated_image def app(): with gr.Blocks(): with gr.Row(): with gr.Column(): image = gr.Image(type="numpy", label="Image") model_id = gr.Dropdown( label="Model", choices=[ "yolov10n.pt", "yolov10s.pt", "yolov10m.pt", "yolov10b.pt", "yolov10x.pt", ], value="yolov10s.pt", ) image_size = gr.Slider( label="Image Size", minimum=320, maximum=1280, step=32, value=640, ) conf_threshold = gr.Slider( label="Confidence Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.25, ) iou_threshold = gr.Slider( label="IoU Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.45, ) yolov10_infer = gr.Button(value="Detect Objects") with gr.Column(): output_image = gr.Image(type="numpy", label="Annotated Image") yolov10_infer.click( fn=yolov10_inference, inputs=[ image, model_id, image_size, conf_threshold, iou_threshold, ], outputs=[output_image], ) gr.Examples( examples=[ [ "images/example1.jpg", "yolov10s.pt", 640, 0.25, 0.45, ], [ "images/example2.jpg", "yolov10m.pt", 640, 0.25, 0.45, ], ], fn=yolov10_inference, inputs=[ image, model_path, image_size, conf_threshold, iou_threshold, ], outputs=[output_image], cache_examples=True, ) gradio_app = gr.Blocks() with gradio_app: gr.Markdown( """ # YOLOv10: State-of-the-Art Object Detection """ ) gr.Markdown( """ Detect objects in images using the YOLOv10 model. Select a pre-trained model, adjust the inference settings, and upload an image to see the detected objects. """ ) with gr.Row(): gr.Markdown( """ Follow me for more projects and updates: - [Twitter](https://twitter.com/kadirnar_ai) - [GitHub](https://github.com/kadirnar) - [LinkedIn](https://www.linkedin.com/in/kadir-nar/) - [HuggingFace](https://www.huggingface.co/kadirnar/) """ ) app() gradio_app.launch(debug=True)